

Wunderbot Project
One Alpha Drive

Elizabethtown College
Elizabethtown, Pennsylvania

17022
 ph: 717-361-1000
 fx: 717-361-1400

www.etown.edu

Faculty Statement
I certify the "Wunderbot 4" has made substantial
improvements in the areas of theory, hardware
acquisitions, and software control from the previous
"Wunderbot" entries into the IGVC competition.

Joseph T. Wunderlich, Ph.D
Project Advisor
Physics & Engineering Department
Elizabethtown College

2 of 17

1. Introduction

The Robotic and Machine Intelligence (RMI) Laboratory at

Elizabethtown College is proud to announce its third entry

– the Wunderbot 4 - into the 2008 Intelligent Ground

Vehicle Competition. Coming off a mid-field showing in the

2006 competition, the Wunderbot 4 team has made

significant improvements in the area of obstacle

avoidance, GPS navigation, and white line detections.

While the main chassis may bring back memories of the

Wunderbot 3 (2006 competitor), the new acquisitions of

vision, LIDAR, and digital compass – along with complete

redesign of internal software including implementation of

JAUS – are steps in the right direction for the versatile

platform that will serve the Elizabethtown, PA community in

web-based autonomous tours in the near future.

A listing of major developments since the 2006 IGVC

onboard the Wunderbot platform is listed in Table 1. A

thorough documentation of the overall design process,

hardware implementation, software development, as well

as IGVC challenge solutions will be discussed within this

paper.

Table of Contents

Introduction 1

Innovations 2

Design Concepts 2

 Evaluation 3

 Constraints 3

 Chassis Improvement 4

Electrical System 5

 Power 5

 Control 5

 Emergency Stop 6

Software Strategy 7

 Vision System 7

 Signal Processing 7

 Line Detection 8

 Path Planning 8

 LIDAR 9

 Signal Processing 9

 Obstacle Detection 9

 Path Planning 10

 GPS/Digital Compass 11

 Signal Processing 11

 Waypoint Challenge 12

 Path Planning 13

JAUS 13

Performance 14

Cost of Robot 14

Social Contributions 15

Conclusions 15

Team Members:
James Painter, CE&CS
David Coleman, CE
Jeremy Crouse, CE
Chris Yorgey, EE
Mike Patrick, CE
Dan Fenton, CE

Project Advisors
Joseph Wunderlich, Ph.D.
Thomas Leap, Ph.D.
Troy McBride, Ph.D.

New for 2008
Chassis 4’ vertical tower for camera

GPS/Compass integrate mount on tower
Waterproof attempt

Hardware Front-mount LIDAR
DVT camera
JAUS access point
Remote control (for manual drive)

Software PID control
Sub-system partitioning
JAUS implementation
White-line detection
Obstacle avoidance
O3 GPS navigation scheme

Table 1 – Wunderbot platform developments since 2006 IGVC.

3 of 17

2. Innovations

The Wunderbot 4 features a new

navigation scheme known as O3 for

GPS navigation and obstacle

avoidance within GPS navigation

which alters the optimal sort explicit

definition of GPS coordinates as

provided by the IGVC judges. The O3

method was published in March in the

IEEE proceedings of the Advanced

Motion Control Workshop (available in

Appendix B). By using the three

stages of O3 (optimal explicit path

planning, local points of opportunity,

and obstacle avoidance) a path

between two GPS coordinates is not

chosen based of local availability, but rather in a global context and the relationship

between the GPS coordinate and obstacle density in the vicinity. A sample course is

shown in Figure 1.

2. Design Concepts

The primary focus of the Wunderbot 4 team was to improve on the systems currently

onboard the Wunderbot 3 platform while developing new algorithms and techniques to

solve the challenges faced at the IGVC 2008. A constant process of evaluating the

current system, proposing new solutions, developing these solutions (combining theory

and simulation results), implementing the solution with technology donated by corporate

sponsors, and testing the solution to provide reassurance of quality, controllability, and

proof of concept is shown in Figure 2.

Figure 1 – Sample GPS waypoint challenge
course with coordinates outlined in white. The
chosen path is shown in pink with the O

3
ability of

“path deviation” shown in a yellow dotted line.

4 of 17

Evaluate
Propose
new ideas

Develop new
systems

Implement Test

Figure 2 – Design process governing the transition from Wunderbot 3 to Wunderbot 4.

2.1. Evaluation – The IGVC 2006

The success of the Wunderbot 3 team in 2006 proved the systems developed to-date

were at or above par to the rest of the competitors. However, there was significant

room for improvement specifically in three areas: 1) obstacle detection - which was

being handled by minimal processing on-board the camera – 2) GPS navigation – no

optimal path between multiple nodes was present and 3) JAUS communication – no

attempt was made in 2006. The complete evaluation period lasted about six months

and the design process was about one year to develop and write the necessary items.

The team’s Gantt chart along with estimated 2000 man-hours is shown in Table 2.

2.2. Constraints on Wunderbot platform

By working with the Wunderbot 3 platform a few variables in robotic design were

already guaranteed from previous successes including maneuverability, mobility,

versatility, and safety as outlined in [1]. Additionally, the team balanced resources,

Table 2 – Wunderbot 4 team Gantt chart showing concurrent works throughout the 30 weeks over
two semesters of 2007-2008 academic periods.

5 of 17

aesthetics, and functionality to develop the new systems as outlined in Table 3. Finally,

the team reviewed the constraints of the IGVC as well meeting additional requirements

of Elizabethtown College and travel abilities.

2.3. Chassis Improvement

Two needs were addressed with the addition of a 4’ tall tower on the rear of the robot: 1)

more stable GPS receiver mount and 2) more focused viewing region for the camera.

The tower was designed in SolidEdge with the specifications shown in Figure 3. The

tower is constructed from one-inch square galvanized steel piping at a height of 4’ (122

cm). It was spray painted black to match the look of the robot and to prevent rust. The

tower has one shelving unit approximately halfway up the tower, which is protected by

plexiglass and houses the GPS receiver and digital compass. At the top of the tower at

40.5cm behind the rear bumper the camera is mounted at an adjustable angle. The

angle of camera is adjusted in a

coarse manner by its angle mount and

finely adjusted by its setscrews in the

housing unit. More information on the

camera mount can be seen in section

4 and Appendix C.

Figure 3 – Tower design measurements. The
camera can be adjusted coarsely by its mounting
unit and finely by its setscrews. This angle is
marked by ‘a’.

Description Actual Constraint Placed by

Vertical Tower for Vision 5’ Under 6’ IGVC

Horizontal Rear Length for

Vision

5’ 3’-9’ IGVC

Front bumper 28” 36” Door width in RMI Lab

Wireless E-stop Yes Yes IGVC/RMI Lab

Waterproof 90% None Need

Table 3 – Constraints placed upon Wunderbot 4 design

6 of 17

3. Electrical System

The majority of the electrical system was carried over from the previous Wunderbot 3

platform with minor changes including 1) wider-conduit to hide additional communication

cables, 2) increased distribution power blocks, and 3) increased number of fuses. A

complete breakdown of the electrical system can be seen in Figure 4.

3.1. Power

Two 12V 60-amp hour batteries connected in series provides approximately two hours

of operating time. A 480W 24V DC-DC ATX power supply provides voltage regulation

for the onboard PC and all system components.

3.2. Control

Due to the castor resistance affecting the turning radius of the Wunderbot, this year’s

team made the decision to reverse the orientation of the drive system. It now features a

rear-wheel drive controlled by two independently controlled RobotEQ AX2550 motor

controllers. These controllers communicate via RS-232 and parameters are passed via

LabVIEW. The RobotEQ motor controllers also feature safety parameters such as

Onboard PC

Wireless Access Point

GPS Receiver

Digital Compass

Camera

Laser Range-Finder

LabVIEW
(O3 Path Planning,

JAUS)

Intellect (Image
Processing)

LaptopRF Remote

RF Receiver

Pushbutton
E-Stop

Relay

Motor
Controller

Left Motor

Right Motor

Left Wheel

Right Wheel

Optical
Encoder

Optical
Encoder

Figure 4 – Block diagram of Wunderbot 4.

7 of 17

temperature, battery voltage, and current draw to ensure proper performance and

damage to equipment is prevented.

One of the most costly problems encountered during early testing was inaccurate

vehicle motion. When operated on smooth indoor surfaces, Wunderbot was able to

move roughly in the intended direction, but once the vehicle was tested outdoors on

grass, motion response had a large degree of error. The largest cause for error is the

front casters, which require a disproportional amount of force in order to change

direction. This problem is a typical case for a PID controller to amend.

The PID closed-loop control was developed in LabVIEW and is very straightforward.

The P, I, and D are all user-adjustable via the front panel, and feedback comes from the

U.S. Digital optical encoders. Unfortunately, the robot itself is extremely difficult, if not

impossible, to model via differential equations, hence classic methods of control theory

could not be instituted to determine the value of the PID's constants. Instead, it was a

trial-and-error procedure, which led to P=0.500, I=20.00, and D=0.001. Very subtle

variations in the derivative constant led the robot to accelerate out of control. A PID

controller's derivative constant in general is highly susceptible to noise, and therefore an

adjustable low-pass filter was designed for the D. This kept the D from fluctuating too

rapidly, while still allowing it to quicken the output's rise time.

3.3. Emergency Stop

The Wunderbot 4 now features four ways of stopping the robot: two hardware and two

software. The onboard hardwired e-stop normally open button will instantly ground the

motor controllers and motion will only be activated with a program reset. This same

relay is available wirelessly through a remote switch.

With the addition of a remote control for manual drive an additional emergency stop was

introduced and is controlled initiated through software. By activating this e-stop button

the control program (LabVIEW) will immediately abort the program and the

communication between the PC and motor controllers will be eliminated; thus stopping

8 of 17

the robot. Finally, anytime the remote LabVIEW program is stopped the robot will halt

its motion and therefore, would be considered another e-stop method.

4. Software Strategy

The largest change made from competing in 2006 was the software strategy onboard

the Wunderbot 4. The team used the previous code as a guide and first developed a

base flow diagram of how the decision should be made within LabVIEW. This flow

diagram is shown in (Figure 1 of) Appendix A and is elaborated upon within this section.

4.1. Vision System

The location at which the camera is mounted has enormous impact on the image-

processing step of the vision system. Various configurations were tested, comparing the

field of view and corresponding image processing times. With the camera 1.2m directly

above the rear bumper and 40.5cm back, the viewing distance extends to roughly

2.25m, missing some data from directly in font of the front bumper, as seen in Figure 5.

4.1.1. Signal Processing

The sacrifice of image

data from in front of the

bumper is acceptable, due

to the trade off between

seeing farther ahead and

trimming the top edge of

the image to reduce

processing time. A

feasibility study on the

processing time reduction

resulting from cropping the top edge of the image showed that the decrease in

processing time was significant enough to allow for image cropping. The percentage

speedup was a nearly linear relationship to the percentage of the image that was

Figure 5 – Camera angle versus distance of sight. The blue
region represents that of a fixed angle at a position equal to
the rear bumper. The dotted lines represent the distance
gained by moving the camera back 40.5 cm.

9 of 17

trimmed, and the final implementation incorporated the cropping of the top 200 lines, for

a reduction of about 110ms in processing time, to about 90ms.

4.1.2. Line Detection

The line detection is performed from within the camera's proprietary software, DVT

Intellect v2.2. First, an erosion filter is applied to the image, using a 3x3 kernel. This

closes many holes of noise, such as small dirt patches that appear through the grass,

while still maintaining the shape of the desired white lines. Larger kernels could produce

an even more accurate image, but processing times increase sharply as the kernel

grows larger. Once noise has been filtered, an Intellect ``line thickness'' sensor is

applied. This measurement sensor first uses a 60% intensity threshold to deduce a

binary image. The sensor then scans every row in the image to find the two edges

closest either side. Final line pass/fail conditions are used to filter shadows and other

undesirable objects in the field of view. A maximum width condition of 300 pixels is

combined with a ``straightness'' condition.

4.1.3. Path Planning

The data from the camera software is then sent to LabVIEW to be used for path

planning. In general, when two lines are found, the following equation is used:








 +
y

xx leftright
,

2
 (1)

When only one line is found, the target becomes the point directly centered between

that line and either the left or right edge of the viewable region. If the line is on the left,

the target is placed on the right, and vice versa. If no lines are found, the target is

placed in the center on the horizon, such that the robot will move directly forward at full-

speed.

10 of 17

4.2 LIDAR

The LIDAR is a SICK LMS200 laser range finder mounted approximately six to eight

inches from the ground on the front bumper of the vehicle. This equipment is used for

obstacle detection in a planar view and can deliver 180-degree resolution up to 80

meters away. For the Wunderbot 4 the LIDAR is configured to deliver 360 data points

(½ degree resolution) at approximately ten meters.

4.2.1. Signal Processing

The current obstacle avoidance on-board the Wunderbot 4 has two parts. The first is a

simple local obstacle detection scheme with a dynamic viewable window. This viewable

window goes through a two-fold level of calculations to determine the best path for the

robot to follow. A radial filter is first placed on the incoming data of the LIDAR. The

data transmission of the LIDAR is in polar coordinates so a radial filter is best. The

radial distance is determined by the following equation:

 Filterradius = (Windowheight
2 x Windowdepth

2) ½ (2)

After the filter is applied the obstacles found less than r are converted to (x,y) using the

following:

 x = r * cos(Θ) (3)

 y = r * sin(Θ) (4)

4.2.2. Obstacle Avoidance

Finally, an obstacle is “within the window” iff:

 x < ½ * (Windowdepth) (5)

 and y < ½ * (Windowheight) (6)

11 of 17

The result of the first part is if an obstacle is found within the window a decision is

necessary. A polar histogram is developed from the “window” obstacles and is shown

in Figure 6. This histogram [2] is useful in determined which direction (left, center, right)

has the highest obstacle density and should provide the highest cost function, locally.

4.2.3. Path Planning

Until now the methods discussed are

local methods for obstacle avoidance.

Each part does not contain starting

and goal positions relative to the

obstacle being detected. A* provides

the ability to incorporate the obstacle detected with the end goal to develop a heuristic

approach to obstacle avoidance and overall guarantee an optimal prune of the search

arena.

The A* method was used in simulations and is implemented on-board the Wunderbot 4.

The simulation versus implementation, however, is different as the simulation provided

a few assumptions, which cannot be assumed on the real application. These

assumptions are listed in Table 4.

As stated the benefit of using A* is the knowledge of the starting and destination

coordinates in the cost function. The cost function of A* is three parts:

Figure 6 – A binary polar histogram is useful
locally in determining which direction to turn
based on the obstacle density within a region: left
(0-45 degrees), center (45-135) and right (135-180).

Simulation assumptions Actual constraints

Uniform motion in any direction Closed loop control necessary to maintain

speed/direction after command issued.

Zero-degree turning radius Turning radius approximately < ½ meter.

360-degree sensing 180-degree line of sight

No time delay in data acquisition Equipment transmission delays

Coordinates of absolute location

Table 4 – Assumptions made during simulations and actual constraints on project.

12 of 17

g = distance from start node

h = distance to goal node

f = g + h (7)

The distance calculations are done using the Manhattan method, which states that only

square paths are to be taken in the X and Y direction independently. Diagonal paths

are acceptable at higher costs.

The simulation results can be found in Appendix F with the actual implementation

windows shown in Figure 7. Notice the only available windows for the cost function in

the implementation are the three windows in front of the autonomous vehicle and that

the global solution is maintained using a mix of local detection and global heuristics.

4.3 GPS/Digital Compass

The orientation in space is obtained through two sensors: 1) GPS receiver and 2) digital

compass. The combination of these two sensors allows for specific path planning and

destination within one meter. The GPS unit is a Trimble AgGPS 114 receiver with

DGPS service provided by OmniStar. The digital compass provided by PNI features 3-

axis roll, pitch, and yaw

measurements.

4.3.1. Signal Processing

The GPS information is

transmitted via RS-232 at a

sample rate of one hertz from

the GPS receiver to the PC in

NMEA sentence of the following

sample format:

Figure 7 – The actual window and line-of-sight for the
Wunderbot is only 3 of the 9 squares available compared
to the simulation. This is due to the limited (180 degrees)
vision of the robot.

13 of 17

$PTNL,GGK,172814.00,071296,32723.46587704,N,12202.26957864,W,3,06,1.7,EHT-6.777,M*48

The first nine of eleven fields are used by the Wunderbot 4, which include UTC time,

UTC date, longitude, N/S orientation, latitude, E/.W orientation, GPS quality, number of

satellites, DOP of fix.

The digital compass is also transmitted via RS-232 and is read in at a variable rate. In

the control software the port is read when 60 bytes of information are available from the

device. The transmit time therefore ranges from 10-20ms.

4.3.2. Waypoint Challenge

Using the O3 method path planning is done in two steps: explicit (before motion) and

implicit (during motion). By sorting the GPS points through traditional discrete

algorithms an optimal order can be achieved in an ideal environment without obstacles.

Furthermore, when the introduction of obstacle occurs – in real time discovery – the

Wunderbot 4 is capable of implicitly changing its path to adapt to its environment.

Explicit path planning. Upon receiving the GPS coordinates from the IGVC judges a

custom script (written in Matlab) is used to sort the points in an optimal order based on

the distance matrix. Since the number of possible paths is on the order of

!(n-1) (8)

a method was developed using the Delaunay triangulation as outlined in Appendix B.

This method has shown to bring the number of permutations from the complete set

shown in equation (8) down to a reasonable set of size n. Additionally, it has also been

proven that by using the Delaunay sub-graph the globally optimal solution has been

preserved and the integrity of the solution has not been compromised.

14 of 17

Implicit path planning. As outlined in Appendix B, a non-traditional use of the Voronoi

polygons has allows for more efficient traversal of the arena. An obstacle that expands

neighbor polygons can allow for local points of opportunity that through testing have

shown to be globally optimal.

4.3.3. Path Planning

The global path planning is done through the explicit and implicit defined above. The

path planner in this challenge incorporates the data from three systems: 1) GPS, 2)

digital compass, and 3) LIDAR. The vision system has been deactivated since its

primary ability is detecting white lines on grass. In this challenge that would pose as

threat more than an aid since the GPS coordinates are outlined in white lines.

Extending from this issue is the case of boundary points. However, using the explicit

graph developed with the original coordinates a convex hull can be developed and as

long as the implicit path is within the convex hull the path is valid and the robot will

execute the proper commands.

5. JAUS

After the 2006 IGVC competition JAUS research was started in order to participate in

the 2008 JAUS challenge. Since the team did not participate in the 2006 JAUS

challenge we had to start from the beginning.

The Wunderbot 4 can read and execute the JAUS message commands from the

operator control unit through the 802.11g data link. During the JAUS challenge the

Wunderbot 4 will be set to monitor for JAUS messages and check for incoming JAUS

commands. At this level of implementation these messages will start the Wunderbot 4

moving forward in autonomous mode, stop the Wunderbot 4 from moving in

autonomous mode, and activate a warning device (sound file output to speaker) and

report position.

In the JAUS software the UDP Ethernet connection is opened to listen for JAUS

messages coming in through that port and IP address. When a message is received it is

15 of 17

checked for the UDP header information containing the ASCII equivalent of “JAUS01.0”

then parsed out of the UDP header. The incoming IP address and port are rechecked in

code to ensure that they are correct for receiving data and carrying out commands. Next

the message properties are parsed out and output to the front panel of the LabVIEW

program. The next piece of information that is in the JAUS header is the command code

followed by the destination ID, the source ID, the data control, and sequence number.

For the competition there is no data control information being sent or sequence number.

After the command code is parsed out of the byte array the command string is sent to

the JAUS Command VI to carry out the command.

5. Performance

The Wunderbot 4 system maintained the same specifications as the previous platform;

however, the results were retested and verified. These are shown in Table 5.

6. Cost

The budget for this year was minimal as many of the changes were software.

Therefore, we have supplied the estimate in total robot costs from last year plus the

additional hardware changes made by the current team to the Wunderbot platform. The

updated budget is shown in Table 6 and a full budget breakdown is available in

Appendix G.

Category Required

Result

Expected

Result

Confirmed

Result

Unit

Speed 5 5 5 Mph

Ramp Climbing 15 45 30 Degree include

Stopping Distance 6 feet, 15%

incline

Immediate Immediate --

E-stop range 50 1000 100 Feet

Payload 20 >20 100 Lbs

Battery life 30 240 120 Minutes

Table 5 – Performance specification on Wunderbot 4.

16 of 17

7. Social Contributions

The Wunderbot 4 team has provided many

social contributions both technical and non-

technical. The technical avenue includes

publishing an IEEE paper, meeting with

industry sponsors, and structuring learning

opportunities for other students within the

department on topic such as control theory,

signal processing, and quality assurance. In

the non-technical venue the team has worked

with high school students sparking their

interests in robotic design. They have been

featured in numerous media outlets including

television, newspaper, and Internet

publications. It is always on the team’s agenda

to further the discussion and developing of robots society to aid in all aspects in the

home, classroom, and/or in space.

8. Conclusion

The Wunderbot continues to be a platform for undergraduate student research in the

RMI Lab of Elizabethtown College and has provided many opportunities educationally

and professionally to its students. The team would like to take this opportunity to thank

the judges and organizers of the IGVC for their hospitality and the team looks forward to

a successful competition this year!

9. References

[1] . Siegwart and I.R. Nourbaksh, Introduction to Autonomous Mobile Robots, The MIT
Press, Cambridge, Massachusetts, 2004
[2] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast mobile
robots”, IEEE International Conference on Robotics and Automation, Leuven, Belgium,
May 16-21, 1998, pp. 1572-1577

Item Price

Remote control $200

Tower parts $150

Plexiglass $50

Electrical blocks $60

Wiring conduit $50

Laptops (3) $1200

Subtotal $1710

Estimated project

2006 net worth

$31,000

Total Cost $32,700

Table 6 – Budget for the Wunderbot 4
team. This figure does not include
additional costs incurred by the club
including but not limited to IGVC travel
costs.

17 of 17

Appendix Listing

Appendix A – Software flow diagrams

Appendix B – O3: An Optimal and Opportunistic Path Planner (with Obstacle Avoidance)

 using Voronoi Polygons (ISBN:

Appendix C – Vision System for Wunderbot 4 Autonomous Robot

Appendix D – IGVC Way Point Navigation Solution; Case Study: Wunderbot 4

Appendix E – The Joint Architecture for Unmanned Systems: A Subsystem of the

 Wunderbot 4

Appendix F – Simulations results of Wunderbot 4 path planning

Appendix G – Complete budget of Wunderbot platform starting with Wunderbot 0.

Appendix A – Software Flow Diagrams

Start

Initialize Variables

Closed Loop
Control

Activate Remote
Control

Activate
ButtonDriver

Use Remote
Control?

Manual
Mode?

JAUS
Mode?

Autonomous
Mode?

Y

Y

N

N

N

Activate JAUS N

N

Use
LADAR?

Use
Vision?

Use
Digital

Compass?

Use
GPS?

Get LADAR
data

Get Vision
data

Path Planner

Get Compass
data

Get GPS
data

Motor Controller

YYYY

Figure 1 – Wunderbot Software Overview

Start

Initialize Variables

Get RPM data
from Optical
Encoders

Store Lx, Rx
Reset PID
variables

Evaluate PID

Set Lx-1 = Lx
Set Rx-1 = Rx

Speed
Change? Y

N
Adjusted
Speed to

Motor
Controller

Figure 2 – Closed Loop Control Algorithm

Start

Line Detection

Reset Control
Variables

Develop Path
Between Lines

Output Data
to Path
Planner

Store on Local Map

Figure 3 – Vision System Control and Decision Making Algorithm

Start

Points in
Window?

Acquire LIDAR
data

Reset Control
Variables

Apply Polar Filter

Convert Points to (x,y) Store on Local Map

Build Local Histograph

Analyze Points
Output Data

to Path
Planner

Y

N

Figure 4 – LIDAR Data Filtering Algorithm

Start

Key Press?

LeftMotor = 0
RightMotor = SpeedLeft?

Right?

Up?

Down?

LeftMotor = Speed
RightMotor = 0

LeftMotor = Speed
RightMotor = Speed

LeftMotor = -Speed
RightMotor = -Speed

Y

N

N

N

Y

Y

Y

YN

N

Figure 5 – Manual Mode Control Algorithm

O
3
:

An Optimal and Opportunistic Path Planner

(with Obstacle Avoidance) using Voronoi Polygons
David M. Coleman and Joseph T. Wunderlich, PhD.

Elizabethtown College, Elizabethtown, Pennsylvania, USA

{colemand, wunderjt}@etown.edu

Abstract- Traditional mobile robot research focuses on a robot

navigating its environment to reach a single goal while avoiding
obstacles. This paper proposes a new method called O3 to solve
the challenges presented at the Intelligent Ground Vehicle

Competition (IGVC) where a navigation course includes multiple
goals to be found in an optimal order. The O3 technique includes
improvements on traditional path planning and obstacle

avoidance techniques while providing an explicit ability to change
course as obstacles are discovered. This method uses modern
trajectories such as minimum-weighted Hamiltonian circuits, A*

algorithm for obstacle avoidance, and local points of opportunity
to update the globally optimal path using Voronoi polygons.
Environmental mapping is also used to speed up the search

algorithms in static environments. Overall, the O3 technique
exploits local points of opportunity while avoiding obstacles and
ultimately finding a globally optimal path through an unknown

environment.

This methodology will be implemented on an autonomous
web-based tour guide robot to serve the Internet community

reviewing Elizabethtown College. This methodology can be
extended to other research areas where multiple locations need to
be traversed independent of their order such as city map, trip

planners, and distribution networks (power, internet, etc) due to
its balance between weighted graphs and obstacle avoidance
(objects, traffic, construction, etc).

I. INTRODUCTION

Mobile robotic motion control can be separated into two

research areas: (1) simple obstacle-free path planning and (2)

path planning which includes various obstacle avoidance

strategies. An example of a simple obstacle-free path planning

strategy is creating a Hamiltonian circuit through a set of given

nodes [10]. A priori information may be added to plan a

specific path around an obstacle [4]. However, obstacle

locations are often not known ahead of exploration by the

robot; this warrants developing more complex obstacle

avoidance strategies.

In [1], a dynamic window approach provides a “local vs.

global” relationship and is used to store obstacles in memory

for later analysis. Heuristics along with additional feedback

from sensors are used to provide motion and obstacle locations

as seen in [9]. To improve the ease of mapping it is suggested

in [3] that obstacles be scaled to match the dimensions of the

robot. Other obstacle avoidance decisions are done using the

cell-decomposition methods of VFH* [4] and Sentz’s A*

algorithm [7].

Most importantly the O
3
 technique heavily relies on Voronoi

diagrams. The Voronoi diagram is used in other path planners

including the roadmap [14] and HGVG algorithms [5]. A

formal definition of the Voronoi diagram can be found in [5],

[14], and [16]. Related to the Voronoi diagram is the Delaunay

triangulation. As defined in [16], the Delaunay triangulation T

is the maximum planar subdivision of n points P = {P1…Pn}

such that no points of P are bounded by the circumcircle of any

triangle in T. The Delaunay triangulation will be used to

restrict the domain of our algorithms and will be expanded

upon throughout this paper. Examples of each of these are

shown in Fig. 1(b), (c), respectively.

II. PATH PLANNING

As stated in [10] and [14] a path planner must be correct and

complete. Correct meaning the algorithm must be accurate and

complete meaning an algorithm must return a failed value

when a solution is not available in a reasonable amount of

time. This is a requirement for both explicit (before motion)

and implicit (during motion) methods.

A. Classical Approach – Explicit Methods

Example: Imagine walking into a room for the first time with

the lights off and being asked to find the door on the opposite

side of the room. You do not process any knowledge of the

room’s exact dimensions, obstacles, or the quickest path to the

door. However, having the knowledge that a door exists (or

assuming it exists), and knowledge that its location is

approximately “across” the room, is enough information to

plan a path (including an obstacle-avoidance strategy) – even

though it may not be optimal.

Similarly, a robot enters an unknown environment and the

complexity of tasks is increased with multiple nodes to be

visited and exact distances and velocities to be rendered. The

information given for target nodes may include GPS position.

Thus specific distances can be calculated based on the entrance

point of the robot; and since the end of the overall path plan

often includes returning to the entrance, this often becomes a

typical Traveling Salesman Problem (TSP) [11]. By solving

the TSP for the given set, a solution will exist that is minimal

in distance (and likely to be traversable by the robot).

A breadth-first search through all possible Hamiltonian

circuits is logically the easiest, but most difficult

computationally. Given a set of n points, as shown in Fig. 1(a),

finding the TSP solution through a breadth-first search is on

the order

 ())!1(−nO (1)

since every point has a degree of (n-1) and every point can be

reached from any starting point. A general source code

structure would look like the following:

1 % Input node locations

2 % Define adjacency matrix

3 Set (control_flags)

4 for i = 1…(n-1)!

5 path = get(g, Hamiltonian);

6 if (is_unique(path))

7 P = path(information);

8 end

9 Reset control flags

10 end

11 return shortest(p)

Given the Voronoi diagram in Fig. 1(b) the Delaunay

triangulation graph can be constructed by connecting points

within touching Voronoi polygons and is shown in Fig. 1(c).

By Euler’s formula (V-E+F=2) [15] the sub-graph is said to

have at most 3n-6 edges and an extreme less number of

Hamiltonian paths. Testing has shown a breadth-first search of

the Delaunay graph is on the order

 ()nO (2)

 The actual number of Hamiltonian circuits that exist in the

Delaunay sub-graph of any graph is dependant on the topology

of the graph and therefore is not generally quantifiable.

Introducing the Delaunay sub-graph into the previous code

segment results has shown to improve the search for a TSP

solution between 40% and 90%. The specific results and

testing software will be explained later in this paper. Fig. 1(f)

shows the improved algorithm efficiency and corresponds to

Table 1.

 Throughout this paper the term “TSP solution” will be used

to identify the Hamiltonian circuit in the Delaunay domain. By

previous arguments TSP solution can be said to be correct

since the globally optimal solution was not lost in the Delaunay

reduction. With the absence of obstacles and unreachable

points within the graph the TSP solution and breadth-first

algorithm are complete.

 It can also be said that by using the TSP solution the robot

will intersect the acceptable radius error (re) on each target

R
e
d
u
c
ti
o
n
 (
%
)

re

Pn

(a)

(d) (e)

(b) (c)

6

8 7

9

10
1

2

4

3

5 6

8 7

9

10
1

2

4

3

5

6

8 7

9

10
1

2

4

3

5

6

8 7

9

10
1

2

4

3

5

(f)

of Points on Graph

Improved Algorithm Efficiency by

using the Delaunay Sub-graph

Fig. 1. (a) Environment of 10 goal nodes; (b) Voronoi Diagram of environment; (c) Delaunay Triangulation of environment; (d) Hamiltonian circuit derived by

(c); (e) Expanded node showing re (f) Reduction in processing time using (c) instead of (a).

node. Once obstacles are introduced implicit methods are

employed and the TSP solution is used as a governing

overview path.

B. Implicit Methods

Recalling the thought experiment from the previous section,

imagine starting to move in the direction you think is correct to

reach the door. How do you go about detecting, avoiding, and

overall re-evaluating the best path to follow to reach your goal?

Do you just run into objects that may be in the room and

bounce off, or do you feel with your arms and attempt to adjust

your senses to the dark room? Let us also focus on achieving

one goal and avoiding obstacles along the way.

A robot has many sensors that contribute to the “overview”

of an environment. Feedback needs to be assessed in real-time

to adjust the course of the robot. Two things need to be

considered for path alteration: turning radius and size of the

dynamic window as described in [13]. The specific algorithms

for real-time obstacle avoidance are beyond the scope of this

paper. Therefore, only key points will be discussed for

completeness of the O
3
 techniques.

As shown in Fig. 2(a), the easiest approach is to assume the

robot is a point position and can change its course at any time.

However, when implemented, this is not often the case as seen

in [3].

As outlined in [1], a dynamic window is common among

implicit algorithms for obstacle avoidance. The sensors

available on the robot govern the exact dimension of this

window. These can include laser range finders, sonar, machine

vision, and magnetic/GPS positioning. An example of the

window approach is seen in Fig. 3. Depending on the sensors

used, only certain directions may need monitored (i.e. forward)

and the previously explored areas can be stored in an

environmental map. In static environments, a map in memory

can be an effective tool to speed up processing time for

revisited areas.

By using the dynamic window approach, heuristics can be

employed for implicit path planning and obstacle avoidance.

As seen in Fig. 4, there are situations where a decision is not

obvious with the limited view of the sensors. As stated in [4]

“a larger trigger distance would not eliminate the problem.” In

fact it could increase the run time for the algorithm computing

all possible avenues, and thus be incomplete. By using a

heuristic approach such as A*, a decision based on a cost

function will be made and followed as shown in path C of Fig.

4. This cost function is explained in [7].

C. Local Opportunistic / Globally Optimal Points

To conclude our previous thought experiment, now imagine

moving towards one goal and, through sensory information, an

obstacle blocks the intended explicitly defined path. While

avoiding the obstacle, another point becomes more desirable

for traversal in distance and availability. Therefore a change in

course should be analyzed to see if it is in fact globally optimal

and not just locally opportunistic.

This locally opportunistic globally optimal visit of an out-of-

order node is a combination of the TSP solution developed in

the first section and the obstacle/motion techniques developed

in the second section of this paper. An obstacle is shown in

Fig. 5(a), which interferes with the TSP solution explicitly

planned. By avoiding the obstacle using techniques previously

discussed, a new point becomes locally opportunistic.

Consider the simplified graph shown in Fig. 5(c). This

graph is connected with edges {D1, D2, D3, T1, T2, T3} as

paths. Assume the ideal case where the turning radii (rr and rl)

are neglected and straight paths are possible. Also assume there

are no obstacles in the paths between {C, 8},{7,8},{7,n},{8,n}.

Let C be the point where the path crosses into the unexpected

Voronoi polygon as shown to the left of the obstacle in Fig.

5(a) surrounding point 8. Allow point n to be the next point to

be traversed after the set of three points shown.

Two equations can be shown: the current path as specified

G

O1 O2

Fig. 3. Dynamic window approach. Obstacles are seen at O1 and O2 and the

goal node is labeled G.

RT

(a) (b)

Fig. 2. Robot with (a) zero turning radii, (b) actual turning radii, RT

C

A B

p

Fig. 4. Cell decomposition of region where one obstacle is in the middle of

the robot’s vision. A decision needs to be made to take path A (left curve) or

path B (right curve). Using the heuristics invoked in A* path B is chosen and the

best-fit curve (path C) is implemented at point P. The curvature at point P is

equal to rl. The grid surrounding the robot represents the environmental map

being developed with A*. Its size is equal to the dynamic window shown in Fig.

3 and is govern by available sensors.

by the TSP solution in Fig. 5(a):

 {6, 7, 8, n} =
 (d6C) + (D2+T3) + (T3+D3) + (T1) (3)

and the opportunistic path shown in Fig. 5(b):

 {6, 8, 7, n} =

 (d6C) + (D1) + (D3+zT3) + (T2). (4)

It must be shown that in order for the path to be optimal (not

just ideally opportunistic) the new path eq. (4) is less weighted

than the current TSP solution in (3).

 (d6C) + (D1) + (D3+T3) + (T2) <

 (d6C) + (D2+T3) + (T3+D3) + (T1) (5)

Subtracting (d6C) from both sides:

 (D1) + (D3+T3) + (T2) <

 (D2+T3) + (T3+D3) + (T1) (6)

By trigonometry rules:

 D1 = (D2
2
 + D3

2
)

1/2
 and

 T1 = ((T3+D3)
2
 + T2

2
)

1/2
 (7)

Combining (6) and (7):

 ((D2
2
 + D3

2
)

1/2
) + (D3+T3) + (T2) <

 (D2+T3) + (T3+D3) + (((T3+D3)
2
 + T2

2
)

1/2
) (8)

Expanding and eliminating like terms:

 γ = (D3
2
+2*D3*T3+T2

2
+T3

2
)

1/2

 + T3 – T2 - (D2
2
 + D3

2
)

1/2
 + D2 (9)

Therefore, when γ > 0 the alternative path is optimal and the

course should be altered.

 Once again it is essential that the local point-of-opportunity

does not compromise the correctness and completeness of the

global solution. Therefore it is necessary that the point of non-

opportunity be the target point after the opportunity point. It is

also sufficient in the case where multiple points-of-opportunity

exists on the way to the original non-opportunistic point. This

would solve the problem where a point of interests resides in

an area of limited opening such as a box shown in Fig. 6.

 In Fig. 6 the explicit TSP solution dictates an A-B-C-D path.

However, after γ analysis, point C is determined to be locally

opportunistic and globally optimal. Now an A-C-B-D solution

exists. While on route to point B, point D is determined to be

locally opportunistic and globally optimal. Once again the

path is now changed to A-C-D-B. By this repetitive process

the γ analysis will prove to be globally correct and complete.

There is an assumption made that all points are reachable by

the robot.

 The γ analysis is a technique that is only necessary to

perform when crossing over an unexpected Voronoi polygon.

Similar to OPEN and CLOSED (and RAISED and

LOWERED) sets in Sentz’s A* algorithm a set needs to be

created for Voronoi polygon crossings along the path between

two points. By setting a flag for an unexpected Voronoi

polygon crossing the γ analysis will be limited to only those of

C

8 7

6

n

C

8 7

6

D
1

T
2

n

T1

D
2

D3 T3

C

8 7

6

n

(b) (c)(a)

Fig. 5. Following the path prescribed in Figure 1(d) the robot should traverse the points as shown in (a). With the discovery of the obstacle it changes points to

traverse the path shown in (b). (c) The combination of (a) and (b) for γ analysis.

D

B
C

A

D

B
C

A

D

B
C

A

Fig. 6. Map with more than one point of opportunity. The original TSP dictates

an A-B-C-D path. After the γ analysis, A-C-D-B is locally opportunistic and

globally optimal.

true opportunity points. Also, the polygonal crossings are used

to speed up the “nearest” point question. By knowing

specifically which Voronoi polygon the robot resides in, the

nearest point is apparent.

 By both these techniques (γ analysis and polygon sets) O
3

expands traditional robot navigation for a multiple-target

environment while still employing traditional obstacle

avoidance strategies.

III. IMPLEMENTATION

Our methods for path planning and obstacle avoidance are

being implemented to solve the challenges at the IGVC

competition in May 2008. One challenge is navigating a long,

complex maze defined by white lines painted on approximately

3-inch tall grass, and riddled with various complex obstacles

(e.g. ramps, pits, trees, fencing, and various cones). Using A*

heuristics with dimensional constraints in the cost functions as

outlined in [3] [4], both correct and complete decisions can be

made. With the addition of environmental mapping in a static

environment, obstacle-processing time can be minimal. In the

second IGVC challenge of GPS navigation with minimal

obstacle avoidance, our O
3
 method is ideal. Our Wunderbot 4

has laser ranges finders, vision system with color recognition,

digital compass, GPS receiving, and optical encoders for

sensor feedback.

IV. PRELIMINARY RESULTS

Table 1 shows the improved processing time seen in our

code during multiple trials. Matlab R2007 was chosen to test

our method because it supports graphing, provides functional

toolboxes for efficient environmental geometry analyzing and

straightforward integration into LabVIEW. LabVIEW

provides the real-time operating controls necessary for the

Wunderbot 4. The testing was done on an Intel Core Duo CPU

@ 2.00GHz. Overall, the Delaunay sub-graph provided an

average improvement over 73%.

V. FUTURE RESEARCH

After competition, the Wunderbot 4 will serve as a platform

for autonomous web-driven tours on the Elizabethtown

College campus. With our O
3
 implemented, a pre-determined

or “way-point” driven tour is not necessary. In fact, any path

can be altered (or tailored) based on student traffic,

construction paths, and/or availability of certain building/fields

on campus. By changing the weights of certain paths in the

TSP solution and cost function (with obstacles), a fully

autonomous robot is possible with O
3
.

VI. CONCLUSION

O
3
 is a unique method that combines traditional implicit and

explicit methods to offer an optimal and opportunistic (and

obstacle avoidant) solution to the areas of path planning for

autonomous robots. By continually implying graphical

techniques such as Voronoi polygons short cuts in calculations

can be achieved as well as opportunistic paths through an

unknown environment. This methodology should also yield

successful results for our Wunderbot 4 robot at international

competition and as a robot tour-guide.

VII. ACKNOWLEDGMENTS

We would like to thank the math department at

Elizabethtown College for their continuing support and

collaboration of theories within this proceeding, especially Dr.

Bobette Thorsen.

REFERENCES

[1] O. Brock, O. Khatib, “High speed navigation using the global dynamic
window approach”, IEEE International Conference on Robotics and
Automation, May 10-15, pp. 341-346 vol.1

[2] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile
robots in cluttered environments”, IEEE International Conference on
Robotics and Automation, Cincinnati, Ohio, May 13-18, 1990, pp.572-
577

[3] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast
mobile robots”, IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 16-21, 1998, pp. 1572-1577

[4] I. Ulrich and J. Borenstein, “VFH*: local obstacle avoidance with look-
ahead verification”, IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 24-28, 2000, pp. 2505-2511

[5] H. Choset and J. Burdick, “Sensor-based exploration: the hierarchical
generalized Voronoi graph”, The International Journal of Robotics
Research, Vol. 19, No. 2, February 2000, pp. 96-125

[6] A. Stentz, “Optimal and efficient path planning for partially-known
environments”, IEEE International Conference on Robotics and
Automation, May 1994

[7] A. Stentz, “The focused D* algorithm for real-time replanning”,
International Joint Conference on Artificial Intelligence, August 1995

[8] J.F. Canny and M. C. Lin, “An opportunistic global path planner”,
Algorithmica, vol. 10, pp. 102-120, 1993

[9] M. Lindhe, P. Ogren, and K.H. Johansson, “Flocking with obstacle
avoidance: a new distributed coordination algorithm based on Voronoi
partitions”, IEEE Conference on Robotics and Automation, April 26-May
1, 2004

[10] R. Siegwart and I.R. Nourbaksh, Introduction to Autonomous Mobile
Robots, The MIT Press, Cambridge, Massachusetts, 2004

[11] S.S. Epp, Discrete Mathematics with Applications, 3rd ed., Brooks Cole,
Boston, MA, 2003

[12] K. Hwang, Advanced Computer Architecture: Parallelism, Scalability,
Programmability, McGraw-Hill, Boston, MA, 1992

[13] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance”, IEEE Robotics & Automation Magazine, Vol. 4,
pp. 23-33, March 1997

Processing Time Comparison (in seconds)

 Number of input points

 Five Six Seven Eight Nine

Full graph 0.0330 0.3656 10.12 575.0 41570

Delaunay sub-graph 0.0183 0.1059 2.036 84.97 4547

Improvement (%) 43.68 ±20.42 70.31 ±7.422 79.29 ±3.915 85.01 ±3.016 89.06
†

Table 1. Reduction of processing time shown by using the Delaunay sub-graph in Fig 1(c) over the complete connected graph of Fig. 1(a). †Standard deviation was

not calculated, as only one test run was available due to the time interval required to complete one pass.

[14] J.J.A.M. Keij, “Obstacle avoidance for wheeled mobile robotic systems
(literature exploration)”, Technische Universiteit Eindhoven, Eindhoven,
The Netherlands, February 17, 2003, Report No. 2003.10

[15] D.I.A.Cohen, Basic Techniques of Combinatorial Theory, John Wiley &
Sons, Inc., pp. 292, 1978

[16] C. Kavka, M. Schoenauer, “Evolution of Voronoi-based Fuzzy
Controllers”, International Conference on Parallel Problem Solving From
Nature, Birmingham, UK, September 18-22

Vision System for Wunderbot IV Autonomous Robot
EGR494: Senior Project in Computer Engineering

James G. Painter
Department of Physics and Engineering

Elizabethtown College
Elizabethtown, Pennsylvania

Email: painterj@etown.edu

Abstract— The Robotics and Machine Intelligence Club of
Elizabethtown College has maintained an ongoing autonomous
robot project for nearly seven years, but the robot has yet to
feature an effective vision system for unmanned navigation. Here
we describe the steps taken toward the development of such a
system, including physical mounting of a camera, image process-
ing, and motor control. The resulting vision system establishes
a platform for competing at the 2008 Intelligent Ground Vehicle
Competition.

I. INTRODUCTION

Autonomous robots serve mankind in areas ranging from
search and rescue to space exploration. In attempt to elicit new,
creative designs from college students [1], the Association for
Unmanned Vehicle Systems International (AUVSI) holds the
annual Intelligent Ground Vehicle Competition (IGVC), an
engagement of roughly 30 unique robots designed by colleges
and universities from various countries, including the United
States, Japan, Canada, and India. Their objective is to excel
at complex autonomous tasks used to measure the robots’
navigability and strength of design.

At Elizabethtown College in Pennsylvania, the Wunderbot
autonomous robot project has been progressing for over five
years. From the financial assistance and donations of numerous
corporate sponsors, new equipment and software is added to
the robot between competitions. Its primary objective is to
compete in the IGVC, with the potential of administering
future automated tours on the college campus. Wunderbot IV
is led by the team of James Painter, David Coleman, and
Jeremy Crouse, with support from Chris Yorgey and Daniel
Fenton, and advised by Dr. Joseph Wunderlich. The project
has become a staple of the school’s Physics and Engineering
Department, attracting prospective students and drawing the
attention of local industry and media.

II. IGVC

The IGVC provides an excellent opportunity for students to
explore the possibilities of unmanned vehicles. 2008 will mark
the 16th anniversary of the competition and the third entry for
Elizabethtown’s Wunderbot. IGVC consists of four challenges
for the autonomous robot, each outlined below [2].

A. Autonomous challenge

The autonomous challenge pits the robot against an outdoor
obstacle course, traversed by remaining on a path of grass ap-
proximately three inches tall, bounded by spraypainted solid or

dashed lines. The robot must avoid obstacles, including fences,
construction barrels, trees, and shrubs. Potholes, inclines, and
sand pits may also be strewn about the course. Scores are
calculated based on the distance traveled through the course
and the elapsed time.
The autonomous challenge will rely on the robot’s vision
system moreso than any other challenge, due to the imperative
condition that the robot remain within two-dimensional white
lines, which go undetected by the laser range-finder.

B. Navigation challenge

In the navigation challenge, a field of approximately one
acre is marked with a number of GPS waypoints (approxi-
mately ten). Each team is provided with the coordinates in
latitude and longitude of each waypoint. Obstacles similar
to those on the autonomous challenge course may also be
placed randomly on the navigation challenge course. Scores
for the navigation challenge are determined by the number of
waypoints traversed by the robot and the time taken to do so.
This challenge will, for the most part, neglect the capabilities
of the vision system. All obstacles can be detected by the laser
range-finder, and the GPS/compass sensing will be responsible
for finding the targets.

C. JAUS challenge

The challenge for Joint Architecture for Unmanned Sys-
tems, although not mandatory, demonstrates the robot’s abil-
ity to communicate using a standardized wireless messaging
system that is growing in popularity in engineering fields [3].
A section must be included in the written report that describes
the robot’s JAUS capabilities, and the robot must demonstrate
a pre-defined working ability to communicate using the JAUS
message type. The JAUS challenge will ignore the vision
system entirely.

D. Design challenge

The design competition exists as a separate entity of com-
petition, in that the robot’s performance has no influence on
the design score. The design competition measures the team’s
procedures, workmanship, and innovation to determine prod-
uct quality. Each team must submit a typed report prior to the
main competition date, detailing the conceptual design of the
vehicle and its components, and emphasizing design changes
from the team’s previous contest entry as well as technological

innovations that distinguish it from the rest of the field. Teams
must also prepare a ten-minute oral presentation. The third
component of the design challenge involves judges’ hands-on
examination of the robot, for such aspects as neatness, safety,
originality, and style.

III. RELATED WORK

The Wunderbot vision system’s most closely-related work
is in the IGVC competition itself. In any given year, roughly
30 other robots, all having identical objectives, are available
for comparison. Following each competition, the organizers
make all teams’ design reports publicly available online,
encouraging the spread of successful ideas. As such, we find
trends in particular subsystems among the contest entrants.
The laser range-finder, for example, has become standard for
obstacle avoidance, having been built into nearly all of 2007’s
competing vehicles.

While many teams may share similar components, each year
brings new innovation in overall design. Part of the initiative in
this matter is the scoring of the design challenge. The scoring
is partially dependent on the vehicle’s display of a significant
subsystem or software upgrade over that which represented
the team previously.

The competition has seen many different vision config-
urations, as well as an assortment of corresponding soft-
ware packages for image processing. Some teams opt for
camcorders, some use industrial cameras, and others choose
to mount webcams [4]. Stereo vision has given robots the
advantage of a line of sight extending to the sides or rear
of the vehicle [4]. Once images have been grabbed, teams
have performed successful filtering through the use of Intel’s
OpenCV library [5], MATLAB [6], and LabVIEW [4]. Alas,
the IGVC has no cookie-cutter winning formula. In fact, oft-
champion Virginia Tech’s traditional three entries per year
are all structurally distinct from one another [7], a further
testament to the competition’s flexible path to success.

IV. PRELIMINARY WORK

Prior to the start of the project, a DVT Legend 554C XE
high-resolution video camera was acquired and configured.
In addition, a LabVIEW sub-VI was written to acquire the
camera’s TCP/IP communication string, in which is contained
the manually-formatted results of any image processing per-
formed. The camera is hard-coded to capture color images at
1280×1024 resolution. The image quality is far better than
needed, but Section V describes how this can be used to our
advantage by zooming out while still maintaining sharp objects
in the distance.

V. CAMERA MOUNT

A steel camera mount, shown in Figures 1(a) and 1(b), was
build atop the Wunderbot’s utility pole, which also houses the
GPS and digital compass. Two 30.5cm×2.5cm flat steel bars
were fastened to the utility pole supports using L-brackets.
At the far end, two more L-brackets were attached, making
the entire camera mount extend about 40.5cm back from the

rear bumper of the vehicle. The L-brackets were bent to form
roughly 45-degree angles. Two 25cm×2.5cm steel bars were
secured across the L-brackets in order to provide a stable
mounting surface for the camera. Through the 25cm bars were
inserted 10cm bolts that screw directly into the four threaded
holes in the back corners of the camera. Wing nuts allow very
precise fine-tuning of the angle at which the camera is directed.
The data and power cables for the camera were concealed with
the 2.5cm plastic conduit that runs along the utility pole.

(a)

(b)

Fig. 1. Wunderbot camera mounted on steel brackets.

The angle at which the camera was mounted played a crucial
role in the eventual image processing step of the vision system.
Mounting the camera farther from the front of the vehicle
would widen and deepen the field of view. A more downward
mounting angle would enable the camera to see directly in
front of the bumper, while a more upward angle would extend
the depth of view. This situation is illustrated in Figure 2.
Another consideration was the image processing time on the
software end of the system, which could be accelerated by
trimming the edges of the rendered image. A larger field of
view yields more unnecessary regions of the image, which can
be eliminated to reduce the processing time.

Various configurations were tested, measuring the range of
view and corresponding image processing times. For instance,
with the camera positioned 1.2m directly above the rear

Fig. 2. Camera viewable region, with camera mounted directly above rear
bumper (blue fill) and with camera shifted back 40.5cm from rear bumper
(dashed lines).

bumper, the camera was able to see approximately 1.4m ahead
of the front bumper, as depicted in Figure 3(a). With the
camera at the same height, but 40.5cm back, the viewing
distance was extended about 85cm to roughly 2.25m, at the
expense of about 25cm lost directly in front of the bumper,
as shown in Figure 3(b). This sacrifice was acceptable, since
the tradeoff is either seeing farther ahead or trimming the top
edge of the image to reduce processing time.

(a) (b)

Fig. 3. Viewable region of camera when mounted (a) directly above rear
bumper, and (b) when mounted 40.5cm behind rear bumper.

Processing time reductions when trimming the image were
significant enough to implement the feature. The percentage
speedup was a nearly-linear relationship to the percentage of
the image that was trimmed, and the final implementation
incorporated the cropping of the top 200 lines, for a reduction
of about 110ms in processing time.

Top Edge Cropped Processing Time Speedup
15% (153 lines) 16% (90ms)
24% (246 lines) 25% (140ms)

VI. IMAGE PROCESSING

The vision system’s image processing is performed from
within the camera’s proprietary software, DVT Intellect v2.2.
First, an erosion filter is applied to the image, using a 3×3
kernel. This closes many holes of noise, such as small dirt
patches that appear through the grass, while still maintaining
the shape of the desired white lines, since the lines (including

dashed lines) will always be wider than three pixels. Larger
kernels could produce an even more accurate image, but
processing times increase sharply as the kernel grows larger.

Once noise has been filtered, an Intellect “line thickness”
sensor is applied. This measurement sensor first uses a variable
60% intensity threshold to deduce a binary image. The sensor
then scans every row in the image to find the two edges closest
either side. Optionally, all edges can be found and more accu-
rately be used as input for the line fitting algorithm to follow;
however, the extra computations lengthen the processing time
roughly three-fold. To help eliminate noise, all edges less than
50 pixels wide are discarded. Next, a Hough Transform with
resolution of four is performed on the detected edges in order
to fit two lines, one closest to the left side of the image and
one closest to the right. These final lines are measured for
separation width, and the average of the two is measured for
straightness, contrast, and angle.

Final line pass/fail conditions are used to filter shadows and
other undesirable objects in the field of view. A maximum
width condition of 300 pixels is combined with a “straight-
ness” condition that will fail the test if the sum of the distances
between the data point that is farthest away in one direction,
and the one farthest away in the other direction, of the resulting
average line.

A formatted string is sent via TCP/IP to the on-board PC.
This string contains (in units of pixels), the dimensions of the
viewing window, the x- and y-coordinates of the point on the
left line with the lowest y-value (nearest to the robot), and the
corresponding points on the right line. Once these are received
by the PC, logic is used to determine the direction in which
to turn.

VII. MOTOR CONTROL

LabVIEW 7.1 was used to develop the all cognition of
Wunderbot IV. This section explains the method for turning
the vehicle and for achieving accurate motion response.

A. Turning

For responding to the white line positions parsed and sent
by the camera, both the x- and y-coordinates are taken into
consideration. Rough scaling factors for both the x and y
direction were used to convert pixels to centimeters. Because
the actual width of the view widens when extending outward,
the scale is only an approximation. The scaling factors were
then used to estimate the depth and width of the camera
view. Once these measurements were obtained, they could be
used to plot the detected lines on a local map with target
locations, as seen in Figure 4(a). The physical locations of
these points are critical in giving the Wunderbot a global
sense of position, which is used to determine how sharply
to turn away from white lines and how to coordinate with
other sensing subsystems, such as the GPS, digital compass,
and LIDAR.

In general, when two lines are found, the target location is
the average of their x-coordinates and the actual value of their
y. When only one line is found, the target becomes the point

directly centered between that line and either the left or right
edge of the viewable region. If the line is on the left, the target
is placed on the right, and vice versa. If no lines are found,
the target is placed in the center on the horizon, such that the
robot will move directly forward at full-speed.

(a)

(b)

Fig. 4. (a) Detected white lines and calculated target points, both plotted on
local map using pixel scale. (b) LabVIEW control panel with adjustments for
vehicle movement.

Controls, shown in Figure 4(b), were designed in the main
LabVIEW sub-VI to adjust the weight of both depth and
lateral position of the lines as they affect the vehicle’s degree
of turning. Additional controls enable the user to adjust the
proximity (both depth and lateral - both must met) within
which a detected line will force the robot to move in reverse,
and another control sets the percentage of the forward speed
to use when backing up.

B. PID Controller

One of the most costly problems encountered during early
testing was inaccurate vehicle motion. When operated on
smooth indoor surfaces, Wunderbot was able to move roughly
in the intended direction, but once the vehicle was tested
outdoors on grass, motion response had a large degree of error.
The largest cause for error is the front casters, which require a
disproportional amount of force in order to change direction.
This problem is an typical case for a PID controller to amend.

The PID closed-loop control was developed in LabVIEW
and is very straightforward. The P, I, and D are all user-
adjustable via the front panel, and feedback comes from
the U.S. Digital optical encoders. Unfortunately, the robot
itself is extremely difficult, if not impossible, to model via
differential equations, hence classic methods of control theory
could not be instituted to determine the value of the PID’s
constants. Instead, it was a trial-and-error procedure, which
led to P=0.500, I=20.00, and D=0.001. Very subtle variations
in the derivative constant led the robot to accelerate out of
control. A PID controller’s derivative constant in general is
highly susceptible to noise, and therefore an adjustable low-
pass filter was designed for the D [8]. This kept the D from
fluctuating too rapidly, while still allowing it to quicken the
output’s rise time. The resulting transient response can be seen
in the figure below.

Fig. 5. LabVIEW control panel for PID controller with robot’s resulting
transient response.

VIII. RESULTS

The effectiveness of the vision system, combined with a
well-developed motion control system, was seen in several
live demonstrations. Wunderbot IV was able to follow a
white-lined, one-turn path in grass, albeit slower than desired
competition speed. Future improvements include the creation
of a global map, on which the position of the robot will
be tracked by the optical encoders. In time, the global map
will also incorporate the GPS navigation system and LIDAR
in order to visually display all facets of the surrounding
environment - target GPS points, white lines, and obstacles.

REFERENCES

[1] B. Theisen, “The 15th annual intelligent ground vehicle competition:
intelligent ground robots created by intelligent students,” in Proc. of SPIE,
vol. 6764, Sep 2007.

[2] B. Theisen, et. al., The 16th annual intelligent ground vehicle competi-
tion (IGVC): official competition details, rules and format, ”september
2008” ed., 2007.

[3] D. Carroll, K. Mikell, and T. Denewiler, “Unmanned ground vehicles
for integrated force protection,” in Proc. of SPIE, vol. 5422, 2004, pp.
357–377.

[4] M. Bovard, et. al., “Design evolution of the Trinity College IGVC robot
ALVIN,” Journal of Robotic Systems, vol. 21, no. 9, pp. 461–469, Sep
2004.

[5] M. Tedder, et. al., “An affordable modular mobile robotic platform with
fuzzy logic control and evolutionary artificial neural networks,” Journal
of Robotic Systems, vol. 21, no. 8, pp. 419–428, 2004.

[6] M. Tedder and C. Chung, “Autonomous robot vision software design
using MATLAB toolboxes,” in Proc. of SPIE, vol. 5608, Oct 2004, pp.
99–106.

[7] AUVSI, “IGVC Design Reports,” 2007. [Online]. Available:
http://www.igvc.org/reports.htm

[8] J. H. Lumkes, Control strategies for dynamic systems: design and
implementation. Marcel Dekker, Inc., 2002.

EGR494 Senior Project-Computer Engineering 2008 FINAL PAPER 1

Abstract—This paper summarizes a solution towards the

Intelligent Ground Vehicle Competition (IGVC) way point

navigation challenge. The Wunderbot 4 of Elizabethtown College

has been a test bed for new algorithms and techniques developed

by numerous team members. Specifically, the navigation

challenge has three main parts: 1) predefining an optimal path to

traverse a set of given coordinates in the fastest time, 2) avoiding

obstacles that may interfere with the straight-line path between

way points, and 3) completing the course by positing the robot

facing magnetic north. The first part can be solved “off-line” and

delivered to the navigation system as a set of sorted coordinates.

The second and third part (along with the actual moving between

way points) must be done in a fully autonomous method.

I.INTRODUCTION

s a third-time competitor in the IGVC the Wunderbot

4 has developed numerous methods for handling

difficulties in previous venues. Starting in 2006, the

Wunderbot 4 came together and devised new subsystems and

methods for solving challenges such as obstacle avoidance,

line following, directional driving, remote controlling for

limited manual drive, GPS navigation, and government

communication protocol. A few of these systems will be

highlighted within this paper as they pertain to the IGVC

challenge of way point navigation.

THE IGVC

The Intelligent Ground Vehicle Competition (IGVC) invites

robotics teams from around the world to solve challenges such

such as obstacle avoidance, GPS navigation, and government

standard communication protocols. It is an annual competition

that features some of the highest ranked schools in the world

from America, India, and Japan. The focus of

the competition is to provide new strategies towards modern

robotic challenges that will one day be made stream and

offered to the public such as autonomous vehicles, service

robots, and more precise machining tools.

Being a part of the IGVC has allowed the past (and current)

Wunderbot teams the ability to showcase their education in

modern robotics as well as provide a platform to share

knowledge with other schools and industry leaders such as

General Motors, AVIUS, and the U.S. Department of Defense.

II.THE NAVIGATION CHALLENGE

The IGVC way point navigation challenge consists of three

parts. On the first day of competition each team is provided a

list of eight to ten GPS coordinates (latitude and longitude).

The points are listed in random order and provide no

additional information as to their placement, surrounding

obstacle density, or traversability by an autonomous robot. The

information that is available is that all the points reside in a

50x50 yard arena in which each GPS coordinate is outlined

with white spray paint on grass and a two meter radius of

acceptance is permitted. The entire arena is outlined by white

lines to ensure the autonomous vehicle (which must recognize

the white boundary lines during qualification) will stay within

the arena and not pose a threat to other vehicles as well as

spectators. A sample course is shown in Figure 1.

The second part to overcome in the navigation challenge

Figure 1 – A sample GPS navigation challenge arena with 8 GPS coordinates

marked with the letter “G” and circumscribed by a circle with radius of two

meters. The obstacles are shown in solid black with the thick black lines

representing a mesh fence and the dotted lines representing the boundary

lines.

consists of obstacle avoidance during trajectory traversal

between the given set of GPS coordinates. Again, since the

obstacle locations are not known before entrance on the course

A

IGVC Way Point Navigation Solution;

Case Study: Wunderbot 4
David Coleman+

Elizabethtown College

TABLE I

ACRONYMS AND DEFINITIONS

Symbol Term

GPS Global Positioning System

iff If and only iff

IGVC Intelligent Ground Vehicle Competition

LIDAR Laser Range Finder

TSP Traveling Salesman Problem

TSP-BG TSP Bounded Graph

EGR494 Senior Project-Computer Engineering 2008 FINAL PAPER 2

– inspection of the course prior to traversal attempt will lead to

disqualification – precautions and techniques must be

employed to ensure the autonomous vehicle does not interfere

with obstacles as well as not provide damage to the arena or

itself. Obstacles that are found in the field range in dimension

and color. Figure 2 shows some sample obstacles which

include orange/white stripped construction barrels, orange

cones, and a orange mesh fence.

Figure 2 – The GPS course will feature obstacles ranging from triangle cones

to orange/white construction barrels. Additionally, there will be orange

construction mesh fence and white spray painted lines on the grass.

The third and final part of the navigation challenge is a

directional face towards magnetic north upon arrival at the

final node. As specified by the rules, the autonomous vehicle

must return to the starting GPS coordinate and face magnetic

north to guarantee all aspects of trajectory traversal on-board

an autonomous vehicle is established.

III.PREVIOUS RESULTS

In 2006, at the 14th Annual IGVC the Wunderbot III team

placed 18 among 32 teams. Specifically, in the GPS

navigation challenge the team placed 9 out of 11 teams that

attempted the course successfully completing one GPS

coordinate traversal in one minute and nineteen seconds. The

winning team in 2006 – Virgina Tech (Johnny-5) – traversed

all nine GPS coordinates in two minutes and eight seconds.

IV.EXPLICIT PATH PLANNING

To begin designing a solution to the navigation challenge a

mathematical approach was given to the first part of the

challenge – defining the optimal sorted order of traversal to

upload to the autonomous vehicle. Reviewing the

requirements of the challenge includes the following: 1) visited

the GPS coordinates in any order, 2) return to starting

coordinate (and face magnetic north), and 3) fastest time wins.

To a mathematician this sounds like a very familiar but

haunting problem – the “Traveling Salesmen Problem” [1].

The haunting task is in the complexing of the problem which

has been proven to be NP-Hard as the number of solutions

becomes exponential as the number of coordinates expands.

Formally, the number of solutions that exists for a given set of

n coordinates is shown to be on the order of:

 O(n) = !(n-1) (1)

Assuming that the number of coordinates defined in the

IGVC challenge has never exceeded ten GPS coordinates there

are still

 !(10-1) = 9! = 362,880 (2)

possible trajectories of traversal within the arena.

Therefore, doing a simple hand sort could prove very

demanding and require more than one pencil.

Beginning in 2006, a solution was research to make this

method more feasible and less demanding. After all, any

“optimal” solution defined in this stage will be ultimately not

be guaranteed optimal once obstacles are introduced. The first

looked at were Kruskal's algorithm and expansion trees.

However, each of these do not provide the “return to start” that

must occur. So, naturally this left only Hamiltonian circuit

methods which lead to the TSP.

Another approach was offered. Instead of ignoring the

Hamiltonian circuit approach and being burdened by the TSP

limits, develop a method that would enhance the the

Hamiltonian approach and will ultimately lead to a solution

less than the TSP boundary. Exploring traditional explicit

path planners where start/goal points are known as well as the

obstacles in the environment lead to the knowledge of Voronoi

polygons. The Voronoi polygons found “pathways” [2] that

allow for safe traversal around obstacles while moving towards

the goal. An example of this is shown in Figure 3.

Since the obstacle locations are unknown in the IGVC

navigation challenge this traditional use of the Voronoi

polygons cannot be guaranteed to work. However, related to

the Voronoi polygons is the Delaunay triangulation. This is

developed by connecting straight lines between touching

polygons with the arena absent of obstacles. Comparing

Figure 3 – Traditional Voronoi polygons are used with a fully-explored region

with known locations for obstacles and coordinates as shown above. The

edges of the polygon provide “pathways” to traverse to avoid the obstacles

and reach the end coordinate.

EGR494 Senior Project-Computer Engineering 2008 FINAL PAPER 3

Figures 4a and 4b where 4b is the Delaunay triangulation of 4a

it is clear a brute force approach to finding the optimal

solution is much easier. In fact, it has been proven to be on the

order of:

 O(n) = n (3)

which n << !(n-1) and therefore is much easier to use even

on the IGVC challenge where n <= 10.

Method

Matlab 2007a Student Edition was used to test the methods

proposed (and is the method that gave the final value of “n”

for the Delaunay method). The code for this portion of the

navigation challenge simulation was straight forward.

1 Load in the unsorted list of GPS coordinates

2 Obtain the Delaunay triangulation points

3 Use brute force techniques to find a solution

4 Compare the weights on all solutions

5 Output best solution

Furthermore, two additional results were found: 1) the

Delaunay triangulation provide a result in less time than the

complete TSP-BG (as expected), and 2) the solution provided

each time was exactly the same as the TSP-BG. The complete

results of the simulation are shown in Figure 5 and show an

improvement in TSP search algorithm at approximately 90%

at the IGVC limits and a 70% in reduction in pure number of

edges found within the graph. Finally, it should be addressed

that the cost function from the complete graph to the Delaunay

triangulation could not be calculated and was developed

around existing Matlab functions.

Equipment

The Wunderbot 4 is equipped with a Trimble AgGPS 114

receiver with DGPS service provided by OmniStar. The

information is transmitted via RS232 from the GPS receiver to

the PC in NMEA sentence of the following sample format:

$PTNL,GGK,172814.00,071296,32723.46587704,N,12202.2

6957864,W,3,06,1.7,EHT-6.777,M*48

The first nine of eleven fields are necessary for GPS

navigation in an autonomous vehicle. These parameters are

listed in Table 2.

Figure 4 – Improved domain between a) original graph and b) Delaunay

triangulation for the algorithm to find the optimal path between coordinates.

V.OBSTACLE AVOIDANCE

Once an optimally sorted list of GPS coordinates is uploaded

to the autonomous vehicle a trajectory can be executed

restricted by two pieces of equipment: LIDAR and vision

system. The information obtained by these two pieces of

equipment are fed into the A* algorithm previous developed

by A. Stentz from Carnegie Mellon in 1996 [3]. This method

of obstacle avoidance uses heuristics to ensure the method of

avoidance is towards the end goal node and not in a loss to the

cost function of traversal.

The current obstacle avoidance on-board the Wunderbot 4

is two parts. The first is a simple local obstacle detection

scheme with a dynamic viewable window. This viewable

window goes through a two-fold level of calculations to

determine the best path for the robot to follow. A radial filter

is first placed on the incoming data of the LIDAR. The data

transmission of the LIDAR is in polar coordinates so a radial

filter is best. The radial distance is determined by the

following equation:

 Filterradius = (Windowheight
2 x Windowdepth

2) ½ (4)

After the filter is applied the obstacles found less than r are

converted to (x,y) using the following:

 x = r * cos(Θ) (5)

 y = r * sin(Θ) (6)

TABLE 2

GPS PARAMETERS

Field Description

1 UTC of position, in hhmmss.ss format

2 UTC Date of position, in mmddyy format

3 Latitude, in degree and decimal minutes; ddmm.mmmmmmm

4 Direction of latitude (N,S)

5 Longitude ,in degree and decimal minutes; ddmm.mmmmmmm

6 Direction of Longitude

7 GPS Quality (0-4) with a value of 4 representing DGPS

8 Number of satellites used in GPS solution

9 DOP of fix
This information is sourced from the NMEA-0183 manual (page 25) in

Appendix Binder 3.

Figure 5 – Using the Delaunay triangulation over the original connected

graph has shown a 90% reduction in processing time as well as a 70%

reduction in the number of edges on the graph. These were shown

through simulations.

EGR494 Senior Project-Computer Engineering 2008 FINAL PAPER 4

Finally, an obstacle is “within the window” iff:

 x < ½ * (Windowdepth) (7)

 and y < ½ * (Windowheight) (8)

The result of the first part is if an obstacle is found within

the window a decision is needed to be made. A polar

histogram is developed from the “window” obstacles and is

shown in Figure 6. This histogram [4] is useful in determined

which direction (left, center, right) has the highest obstacle

density and should provide the highest cost function, locally.

Figure 6 – A binary polar histogram is useful locally in determining which

direction to turn based on the obstacle density within a region: left (0-45

degrees), center (45-135) and right (135-180).

To now the methods discussed are local methods for

obstacle avoidance. Each part does not contain starting and

goal positions relative to the obstacle being detected. A*

provides the ability to incorporate the obstacle detected with

the end goal to develop a heuristic approach to obstacle

avoidance and overall guarantee an optimal prune of the

search arena.

The A* method was used in simulations and is implemented

on-board the Wunderbot 4. The simulation versus

implementation, however, is different as the simulation

provided a few assumptions which can not be assumed on the

real application. These assumptions include:

1. Uniform motion in any direction

2. Zero-degree turning radius

3. 360-degree sensing

4. No time delay in data acquisition

5. Coordinates of absolute location

With the actual implementation constraints including:

1. Closed loop control necessary to maintain

 speed/direction after command issued.

2. Turning radius approximately < ½ meter.

3. 180-degree line of sight

4. Equipment transmission delays

5. Radius of acceptance on destination coordinate

Figure 7 – The cost function is dependent on the movement of the robot.

Diagonals are cost heavy as those movements require more processing.

Figure 8 – The actual window and line-of-sight for the Wunderbot is only 3 of

the 9 squares available compared to the simulation. This is due to the limited

(180 degrees) vision of the robot.

As stated the benefit of using A* is the knowledge of

starting and destination coordinates in the cost function. The

cost function of A* is three parts:

 g = distance from start node

 h = distance to goal node

 f = g + h (9)

The distance calculations are done using the Manhattan

method which states that only square paths are to be taken in

the X and Y direction independently. Diagonal paths are

acceptable at a higher costs as shown in Figure 7.

The simulation results can be found in Appendix Binder #2

with the actual implementation windows shown in Figure 8.

Notice the only available windows for the cost function in the

implementation are the three windows in front of the

autonomous vehicle and that the global solution is maintained

using a mix of local detection and global heuristics.

Equipment

 The LIDAR is a two-dimensional view mounted

approximately six to eight inches from the ground on the front

bumper of the vehicle. This equipment is used for obstacle

detection in a planar view and can deliver 180 degree

resolution up to 80 meters away. For the Wunderbot 4 the

LIDAR is configured to deliver 360 data points (½ degree

resolution) at approximately ten meters.

The vision system on-board is configured to detect white

lines painted on grass at a distance of one-and-a-half meters in

front of the robot which is approximately three feet wide. For

the GPS navigation the vision system plays a minimal role as

the GPS coordinates are outlined in white spray paint so with

the methods of current programming the robot will avoid or

may even follow the lines instead of entering the two meter

radius of acceptance. It is shown that as long as the

autonomous vehicle is within the convex hull of the known

GPS coordinates the vision system can be turned off and the

LIDAR be the only method of obstacle detection.

EGR494 Senior Project-Computer Engineering 2008 FINAL PAPER 5

VI.IMPLICIT TRAJECTORIES

Finally, an unique opportunity is available when the mix of

obstacle avoidance and optimal path planning is mixed. This

point of opportunity is available when “avoiding” an obstacle

that is large enough to force a deviation from the optimal order

in such a fashion that another coordinate becomes locally

optimal to traverse out of order. This locally opportunistic yet

globally optimal visit to the node out of order is a unique

feature to the overall cost function of the Wunderbot 4 path

planning scheme.

 This method was recently published by David Coleman,

“O3: An Optimal and Opportunistic Path Planner (with

Obstacle Avoidance) using Voronoi Polygons.” [5] Please see

Appendix A for this theory and resulting calculations.

VII.SOCIAL CONTEXT

Extending from the IGVC challenges are numerous

opportunities to embed this research in areas of autonomous

vehicles for the public use, improving cost functions for

current autonomous flight systems, GPS navigation in the car,

and obstacle avoidance techniques in a machine robotic arm in

a factory. The safety on-board the Wunderbot 4 is three fold:

1) a hard-wired relay on board the robot that will terminate

power to all motor controllers, 2) a wire-less emergency stop

controller that transmits a signal to the on-board relay, and 3) a

software emergency stop controller which places the robot in a

halt state. The first two are IGVC required with the third

being precautionary but not mandatory.

VIII.CONCLUSION

As shown the Wunderbot 4 has had a complete overhaul of

the software when it comes to the path planning scheme locally

for basically trajectories as well as globally for the GPS

navigation challenge at the IGVC 2008. The Wunderbot 4 has

provided many opportunities for testing the methods

developed since 2006 in mathematics, simulations, and now

implementation.

IX.REFERENCES

[1] S.S. Epp, Discrete Mathematics with Applications, 3rd ed., Brooks Cole,

Boston, MA, 2003
[2] R. Siegwart and I.R. Nourbaksh, Introduction to Autonomous Mobile

Robots, The MIT Press, Cambridge, Massachusetts, 2004
[3] A. Stentz, “The focused D* algorithm for real-time replanning”,

International Joint Conference on Artificial Intelligence, August 1995
[4] I. Ulrich and J. Borenstein, “VFH+: reliable obstacle avoidance for fast

mobile robots”, IEEE International Conference on Robotics and
Automation, Leuven, Belgium, May 16-21, 1998, pp. 1572-1577

[5] Coleman, D. and Wunderlich, J.T. (2008). O3 : An optimal and
opportunistic path planner (with obstacle avoidance) using voronoi
polygons. In Proceedings of IEEE the 10th international Workshop on
Advanced Motion Control, Trento, Italy. vol. 1, (pp. 371-376).
Pisticataway, NJ: IEEE Press.

Abstract—The Wunderbot 4 is going to be competing in
the Intelligent Ground Vehicle Competition (IGVC) and as
part of the competition we, the team, must make changes
to the current system. We are in the process of rewriting
the entire program that runs the Wunderbot in order to
make future implementation easier and current
implementation of new subsystems understandable. As
part of the team I am in charge of programming the Joint
Architecture for Unmanned Systems (JAUS) protocol used
by the Department of Defense (DoD) which is a challenge
in the upcoming competition.

Index Terms—
OCU – Operator Control Unit
JAUS – Joint Architecture for Unmanned Systems
IGVC – Intelligent Ground Vehicle Competition
WGS – World Geodetic System
UDP – User Datagram Protocol
ASCII – American Standard Code for Information

Interchange
GUI – Graphical User Interface
VI – Virtual Instrument

I.INTRODUCTION

he Intelligent Ground Vehicle Competition is a yearly
competition where universities and colleges come

together to compete and show their achievements in the field
of robotics. There are four main competitions that take place
at the IGVC: Design, Navigation, Autonomous and JAUS
challenges. In the past the Wunderbot has not competed in the
the JAUS part of the competition since it was optional and no
one on the team had time to work programming that needed
done to compete in this area. Needing someone to work on
this project for the competition and being new to the team at
the time I chose to undertake this project.

T

II.RESEARCH

The Joint Architecture for Unmanned Systems is an
architecture specified for use in research, development and
acquisition for unmanned systems. The JAUS protocol is an
emerging universal command language that all robots under
the Department of Defense will use so that different
organizations don’t have to upgrade to the most current



hardware and software technology in order for older versions
of autonomous vehicles to continue interoperability with
newer autonomous vehicles. This is strictly a message set that
was developed by the Department of Defense to allow for
interoperability.

The JAUS architecture has to support all classes of
unmanned system, rapid technology insertion, interoperable
operator control unit, interchangeable/interoperable payloads,
and interoperable unmanned systems. According to the IEEE
interoperability is defined as the ability of two or more
subsystems to exchange information and to use the
information that has been exchanged [1]. Classes of unmanned
systems can range from air, ground, water and size (e.g.
throwable to ship-sized) should not to be an issue when it
comes to interoperability.

Interoperable operator control units (OCUs) can range in
size with each having different levels of functionality and
JAUS should allow for the interoperability of the operator
control units. As concepts are developed and technology
improves the ability of payload capabilities, organizations
must have the ability to update the payload without
redeveloping the whole unmanned system and JAUS has to
allow technical advancements while not imposing specific
hardware or software implementations.

Since some missions are not possible with just one
unmanned vehicle JAUS must allow for communication
between multiple unmanned systems no matter what platform
they are running. JAUS must also be independent of
technology, should not allocate functions to any particular
element of the system, should not define or measure system
performance, should not infringe upon intellectual property
and data rights, should facilitate diverse operational
procedures should focus on open standards and architectures
and should be flexible enough to support a wide range of
possible missions and be independent of operator use.

JAUS was also made to be independent of vehicle
platform, mission, computer resource, technology and operator
use. Vehicle platform independence means that no
assumptions are made about about underlying vehicle since
unmanned systems include a wide spectrum of platforms.

Mission Independence mans that JAUS must isolate
mission specific functions because of there bing so many
different types of uses and missions that unmanned systems
can be used for. This allows for JAUS to be independent of
any specific mission or set of missions that may be built into
the unmanned system.

1

The Joint Architecture For Unmanned Systems:
A Subsystem of the Wunderbot 4

Jeremy Crouse Computer Engineering
Elizabethtown College

crousej@etown.edu

Computer resource independence means that JAUS must
maintain computer hardware independence in order to be
applicable to all unmanned systems. Technology
independence means that JAUS cannot be built around a
specific technology solution or else it may eliminate a superior
solution. Operator use independence is the last requirement of
JAUS which means that it must be independent of any uses the
operator will have for the unmanned system. JAUS is not
supposed to restrain the user in determining the best approach
to accomplishing a mission.

Figure 1: JAUS Independence requirements [3]

There are three different levels of compliance for joint
architecture for unmanned systems. The levels are inter-
subsystem, inter-nodal, and inter-component. According to the
JAUS hierarchy a subsystem is a logical stand-alone
operational entity such as an OCU or unmanned vehicle.
Within a subsystem the computer processors are roughly
defined as nodes and software processes executing within a
node is defined as its components.

Level one compliance, inter-subsystem, covers the
requirements of communication between subsystems and its
purpose is to support the interoperability of the subsystems.
Such subsystems that are included in level one compliance are
robot to robot, robot to controller and controller to controller.
Level two compliance deals with the requirements between
nodes and its purpose is to support the interoperability of the
nodes.

The nodes involved with this level of compliance are
payload to payload and payload to on-board controller just to
name a couple. Level three compliance addresses the
requirements between the components. Since JAUS is still
fairly new this level of compliance is still not defined within
the JAUS standards and is not testable at this time.

Figure 2: JAUS Levels of Compliance [4]

In the JAUS portion of the IGVC competition we will be
using two of the many components that JAUS has
implemented into its system. We will be sent information for
the Primitive Drive (ID 33 given by JAUS) which is the
component that performs basic driving and all platform related
mobility functions.

This also includes other devices such as an engine and
lights if present. Since JAUS has to promote interoperability
the particular platform of wheels (e.g. tracked or not) and
power plant (e.g. gasoline, diesel or battery) is not an issue.

The other component that we will be using in the JAUS
challenge is the Global Pose Sensor (ID 38 given by JAUS).
This component determines the global position and orientation
of the platform and the reports the given latitude, longitude,
and elevation in accordance with the WGS 84 standard. All
this information is being sent via wireless Ethernet to an
access point on the robot.

The packet structure that the Department of Defense has
chosen to use is the User Datagram Protocol (UDP) protocol
and as stated by JAUS compliance only one JAUS message is
alloted per UDP packet sent.

Figure 3: Basic UDP setup with JAUS incorporated

JAUS defines six different classes of messages at the
component level. This segmentation is used as a method of
organizing the messages and also allows message command
codes to be masked prior to evaluation to help with the
message transaction process.

Figure 4: Segmentation of Command Codes by class [6]

The command message class is used to effect system mode
changes, actuation control, alter the state of a component or
subsystem or to initiate some other type of action. The query

2

message class is used to solicit information form another
component. The inform message class allows components to
transmit information to each other (e.g. status reports,
geographic position, state information). The event setup
message class is used to setup the parameters for an event
notification message and to have a component start the
monitoring for the event trigger.

The event notification message class communicates the
occurrence of the event (e.g. engine over temperature, oil
pressure, etc). The node management message class is only
used by the node management task and is used for node
specific communications (e.g. configuration information,
component registration). Lastly the experimental message
class is used to provide a mechanism for experimentation with
new messages that have not been defined in the JAUS
reference architecture. This class is mainly there for the
expansion of the current message set.

All JAUS messages are required to have a header and
data fields. JAUS is setup in this format because it is common
to all messages and it allows JAUS to employ an embedded
protocol which means that certain fields within the header
provide information on how to handle the message. Each field
in the message header is interpreted as an unsigned integer
value and the header contains information regarding the
properties, data size, handling requirements, data encoding
and decoding and message routing.

Figure 5: JAUS message header data format in bytes [6]

The message properties outlined in field one of the
message header data are split into six distinct bit-fields. The
message priority supports values ranging from 0 to 15. The
default priority is what is being sent to us in the IGVC JAUS
challenge.

The acknowledge/negative acknowledge behavior is set
to none for the IGVC JAUS competition. Property bit six is
the service connection indicator which is always set to zero
unless a service connection is needed. The experimental bit
should always be set to JAUS and the version bits get set to
two for the JAUS challenge. The rest of the message
properties are not used at this time and are being used for
future expansion of the JAUS protocol and are set to zero.

Figure 6: Message Property detailed structure [6]

The header defines the command code in field two which is
a two byte numeric value that specifies the type of message
and size of its required data and it encoding and decoding
characteristics. The source and destination ids that are defined
in fields three through ten identify where the message data is
coming from (source) and where the message data should be
sent to (destination).

These two fields deal with routing commands through the
unmanned system. The data control field from bits zero to
eleven are for the size of data per transaction and data flag bits
from twelve to fifteen are used to control single/multi packet
transactions. The last field is the sequence number which is
used to serialize messages.

Figure 7: JAUS message header detailed structure [6]

III.JAUS & IGVC

A.Learning Process
After the 2006 IGVC competition JAUS research was

started in order to participate in the 2008 JAUS challenge.
Since the team did not participate in the 2006 JAUS challenge
we had to start from the beginning. Reading through the
reference architecture and doing some addition research on
line was the beginning of the JAUS process.

After reading through the reference architecture and
looking though the header structure coding was started to
separate the difference parts of the structure. In order to have
the Joint Architecture for Unmanned Systems ready for
competition I need to program three different commands to
pass the challenge, implement the LabVIEW code into our
autonomous vehicle, and be able to receive the commands
through wireless communication and have the commands
carried out.

B.Implementation
With this implementation on the Wunderbot 4 can read

and execute the JAUS message commands from the operator

3

control unit through the 802.11g data link. During the JAUS
challenge our system will be set to monitor for JAUS
messages and check for incoming JAUS commands. At this
level of implementation these messages will start the
unmanned system moving forward in autonomous mode, stop
the unmanned system from moving in autonomous mode, and
activate a warning device (sound file output to speaker).

C.Challenges Encountered
When this project was first started i did not have any test

software except what i had written to test how the header was
being separated and i did not know LabVIEW that well.
Reading though all the documentation keep the project at a
standstill until i could figure out how to decipher what i
needed from it.

There were various coding issues that were encountered
during this project with the way that the header file was being
split up and deciphered. Until the JAUS Compliance Suite was
received i had no way to test our software to make sure if it
was ready for competition. i could not getting the compliance
suite to work for a while until i received an email about a bug
in the way I installed it.

IV.JAUS ON WUNDERBOT 4
The router on the Wunderbot 4 is programmed to only

allow messages from the JAUS OCU IP address
(192.168.128.1) and the JAUS router on the Wunderbot is set
to the IP address of 192.168.128.253. The router on the
Wunderbot also checks for the JAUS port (3794) and does not
except messages from any other port and the frequency
channel is set to 802.11g.

In order to change data on the router you must plug the
Ethernet cable into the router then to your computer and open
the Network Connections window, once in there right click on
the Local Area Connection and click on Properties. Then
scroll down to Internet Protocol (TCP/IP) and click the
Properties button.

When the window appears click the Use the following IP
address and enter the IP address (192.168.128.2) and Subnet
Mask (255.255.255.0) and then open an Internet Explorer
window. Type the IP address (192.168.128.253) into the
address bar and then a GUI will show up where you enter the
user name (Admin), password (admin), and check the “I agree
to the terms and conditions below” then click the sign in
button. This should not need done unless a new router is
obtained.

In the JAUS software I first open the UDP Ethernet
connection to listen for JAUS messages coming in through
that port and IP address. When a message is received I check
for the UDP header information that is eight bytes containing
ASCII equivalent of “JAUS01.0” then parse that out of the
UDP header.

I then double check to make sure the incoming IP address
and port are correct for me to be able to receive data and carry
out the commands. Next in my code I parse out the message
properties and output them to the front panel of my LabVIEW
code. The next piece of information that is in the JAUS header
is the command code followed by the destination id and the
source id and the data control and sequence number. For the

competition there is no data control information being sent or
sequence number.

After the command code is parsed out of the byte array I
send it to the JAUS Command VI to carry out the command.
There will be a new portion of code to accommodate the new
part of the challenge where the destination id will be parsed
out and need to be sent to a new set of commands to get
information from the GPS. Screen shots of router setup and
code are in Appendix A.

V.SOCIAL IMPACT

With the development of unmanned/autonomous vehicles
and technology there have been many social and ethical
impacts that we have had to face. Should robots and
unmanned systems do our thinking and decision making for us
removing the human error or should we keep the human in the
equation.

Also the interoperability of these systems has an impact
to us. If an unmanned/autonomous search team is sent out to
find you lost in the woods would not you want them to be able
to communicate no matter what platform they are built on so
they could work together to find you faster.

These unmanned systems reduce exposure of humans to
harmful environments, preform tasks not possible for humans
and provide cost effective solutions to repetitive tasks. A large
number of unmanned system products are being introduced to
the market and many of these systems are characterized as
task dependent and non-interoperable.

That is where JAUS comes into play because it makes
these non-interoperable systems interoperable no matter the
platform and it also supports the rapid and cost-effective
development of unmanned systems.

APPENDIX

A.Appendix A: Router Setup Screen shots

B.Appendix B: Software Screen shots

C.Appendix C: JAUS Documentation

REFERENCES

[1] Institute of Electrical and Electronics Engineers. IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY: 1990.

[2] Pedersen, Jorgen. A Practical View and Future Look at JAUS. May
2006.

[3] The Joint Architecture for Unmanned Systems, Compliance
Specification (CS), Version 1.2, 25 October 2006.

[4] The Joint Architecture for Unmanned Systems, Domain Model (DM),
Volume I, Version 3.2, 10 March 2005.

[5] The Joint Architecture for Unmanned Systems, Reference Architecture
Specification (RA), Volume II, Part 1 Architecture Framework,
Version 3.3, 27 June 2007.

[6] The Joint Architecture for Unmanned Systems, Reference Architecture
Specification (RA), Volume II, Part 2 Message Definition, Version
3.3, 27 June 2007.

[7] The Joint Architecture for Unmanned Systems, Reference Architecture
Specification (RA), Volume II, Part 3 Architecture Framework,
Version 3.3, 27 June 2007.

4

1
 o
f
1

E
m
p
lo
y
ed
 A
*
 t
ec
h
n
iq
u
es
 i
n
 s
im
u
la
ti
o
n
s

G
o
al

(g
re
en
)

S
ta
rt

(g
re
en
)

O
b
st
ac
le
 d
et
ec
te
d

(d
ar
k
 b
lu
e)

P
at
h
 t
ak
en

(l
ig
h
t
b
lu
e)

A
p
p
e
n
d
ix
 F

 M
a
tl
a
b
 w
a
s
 u
s
e
d
 t
o
 s
im
u
la
te
 t
h
e
 A
*
te
c
h
n
iq
u
e
 a
n
d
 t
o
 f
u
rt
h
e
r
it
s
 u
n
d
e
rs
ta
n
d
in
g
.
 B
e
lo
w
 a
re
 s
c
re
e
n
s
h
o
ts
 o
f
th
e
 s
im
u
la
ti
o
n

w
ri
tt
e
n
 b
y
 t
h
e
 W
u
n
d
e
rb
o
t
4
 t
e
a
m
.

1 of 1

Appendix G

The Wunderbot 4 team has enhanced the current Wunderbot platform. Below is the
comprehensive budget since the beginning of the Wunderbot project.

	Elizabethtown College - Wunderbot IV.pdf
	AppendixA
	AppendixB
	AppendixC
	AppendixD
	AppendixE
	I.INTRODUCTION
	II.Research
	III.JAUS & IGVC
	A.Learning Process
	B.Implementation
	C.Challenges Encountered

	IV.JAUS on Wunderbot 4
	V.Social Impact
	A.Appendix A: Router Setup Screen shots
	B.Appendix B: Software Screen shots
	C.Appendix C: JAUS Documentation

	AppendixF
	AppendixG

