
 Page 1 of 16

ATHENA
2008 Intelligent Ground Vehicle Competition

 Page 2 of 16

1. Introduction... 3
2. Innovations.. 3
3. System Design .. 3

3.1 Team Structure.. 3
3.2 Design Process .. 4

4. Mechanical Design.. 5
4.1 Design Strategy... 5
4.2 Performance .. 6

5. Hardware... 7
6. Electrical System .. 8

6.1 System Monitoring.. 9
6.2 E-Stop System... 10
6.3 Power Consumption.. 10

7. Software Design.. 10
7. 1 Software Environment ... 10
7.2 Version Control... 10
7.3 Integrated Development Environment (IDE).. 11
7.4 Software Architecture ... 11
7.5 TCP/UDP Sockets... 12
7.6 Concurrency and Parallelism .. 12
7.7 Path Planning .. 12
7.8 Vision.. 13
7.9 Kalman Filter .. 13

8. Joint Architecture for Unmanned Systems (JAUS).. 15
8.1 Learning Process... 15
8.2 JAUS Integration .. 15
8.3 Problems ... 15

9. Vehicle Costs .. 16
10. Conclusion .. 16
11. Acknowledgments... 16

 Page 3 of 16

1. Introduction

UB Robotics’ Unmanned Vehicle Team (UVT) at the University at Buffalo has designed

and fabricated an autonomous unmanned ground vehicle to compete in the 16th annual

Intelligent Ground Vehicle Competition (IGVC). Several undergraduate students in the

fields of mechanical, electrical, and computer engineering collaborated to produce a

rugged and robust vehicle platform that can meet or exceed customer requirements.

Modularity in both the software and hardware allow seamless system expansion and

effortless integration of additional components.

2. Innovations

The heavy use of TCP/UDP sockets for interfacing the various software modules such as

GPS and motor control eased integration of the JAUS requirements since the capability

of sockets was already built into the system. Only a module that decodes messages was

needed to integrate the JAUS into the platform. The use of multithreading to enhance

performance on multi-core processors allowed for very intensive image processing which

would have caused slowdowns and increased data latency on single core processors. The

diagnostics utility allows for data logging and remote control from any computer

connected to the network that the robot is connected to using its Wi-Fi adapter. In

addition, a terminal emulator, such as PuTTY or telnet, found on most computers can be

used to connect to the diagnostics socket and retrieve data.

3. System Design

3.1 Team Structure

There were 11 active members working on this project from different engineering

disciplines. These members focused on specific areas of the project which best matched

their individual skill sets. Table 2.1 lists the team roster.

 Page 4 of 16

Name Major Year Team Role

Mike DiSanto EE 4th Year Undergrad Team Leader

Tim Montgomery EE 4th Year Undergrad Hardware Team

Dan Muffoletto EE 3rd Year Undergrad Hardware Team

John Amend ME 4th Year Undergrad Mechanical Team Lead

Kurt Cavalieri MAE 4th Year Undergrad Mechanical Team

Brett Cotton MTH 4th Year Undergrad Mechanical Team

Mark Tjersland CEN/EE 4th Year Undergrad Software Team Lead

Jake Joyce CSE 2nd Year Undergrad Software Team

Shajan Thomas MAE 4th Year Undergrad Software Team

Brain O'Conner CSE 3rd Year Undergrad Software Team

Jesse Evers EE 4th Year Undergrad Software Team
Table 3.1: Team Roster

The team was broken down into a mechanical team, software team, and hardware team.

Each sub-team focused on specific tasks that were distributed during team meetings.

Figure 2.1 illustrates the sub-team hierarchy.

Figure 3.1: Team Member Hierarchy

3.2 Design Process

UB Robotics’ UVT used different design techniques and project management tools to aid

in system development. A private Google® group account was created specifically for

this project. This allowed seamless, forum style communication between members and

sub-teams as well as a place to store design files and meeting minutes. The first step in

 Page 5 of 16

the design was to review the rules and system requirements. We then created a problem

statement and system requirements document. Throughout the entire design process

these documents were referenced to ensure that we were including the necessary

customer requirements and not wasting time on features that may or may not be

desirable. Since this was our first year competing in this competition, a lot of time was

spent researching what sensing hardware would be needed in order for the vehicle to be

able to navigate autonomously. With a high level architecture mapped out, each sub-

team designed their respective components to satisfy the requirements of the system as a

whole. This method proved to work well as team’s worked in parallel and was able to

communicate and track each team’s progress through the Google® group.

Figure 3.2: System Design Flow

4. Mechanical Design

4.1 Design Strategy

The mechanical design was driven by two main factors: cost and performance. We knew

from the beginning that the average expenditures for IGVC teams were beyond our

means, so we made every effort to reduce cost or obtain sponsorship where possible. Our

primary attempt to reduce cost was by purchasing two electric ATVs and then

cannibalizing them for parts. The ATVs were chosen over other possible vehicles

because one of our goals was to make a vehicle that could realistically be used in an off-

road setting. We felt that the competition had been lacking in that regard, with vehicles

having difficulty traversing the fairly mild terrain in years past. Therefore these ATVs,

 Page 6 of 16

with approximately 12in diameter knobby tires, were a logical purchase. Error!

Reference source not found. is a photo of the ATVs with the plastic body removed from

the unit on the right. The ATVs (model XA-750) were purchased from X-treme Electric

Scooters, a sub-company of Alpha Products International, Inc. Their size was somewhat

unusual, being

too powerful for a child, but too small for an

adult to ride comfortably. Each ATV cost

us $599, and we were able to use the

motors, batteries, frame, wheels, axles,

bearings, sprockets, roller chain, and horn.

Pro/Engineer Wildfire was used to model

the ATVs and design the final vehicle. The

main performance specifications for the final Figure 4.1: Electric ATV’s

design were that it was within the allowable size requirements, was mechanically

governed to less than 5mph, and was able to accommodate everything it would need to

contain (sensors, computer, payload, etc.). Our electrical team also specified that the

vehicle be skid steer with as close to a square wheel pattern as possible. They felt that

skid steering would be easier to control, especially for our inaugural entry in this

competition.

4.2 Performance

Initial testing of the ATVs yielded promising (and fun) results. The 750W (~1hp)

brushed DC motor driving each ATV was powered by three 12V, 12Ah batteries, wired

in series. Although uncomfortable for an adult to ride, each ATV was easily able to

transport our club members. Testing was conducted on campus green space that was not

particularly well manicured. We measured top speed of the ATVs at just below 10mph;

the batteries lasted approximately 30 minutes under continuous testing; and the vehicles

had no trouble carrying our 150lb team members up inclines greater than 30°.

In the final vehicle shown in Figure (a), the two ATVs have been cut in half and the rear

ends have been spliced together. New, secondary axles were fabricated that allowed for

chain-driven skid steering. The motor output, already geared down by ½ in the original

 Page 7 of 16

ATVs, was geared down by an additional ½ in the final design to set the top speed to less

than 5mph. These modifications give Athena incredible performance statistics, including

roughly four times the torque of either ATV alone. Completed, Athena has a top speed

less than 5mph, an available 2 hp, and although torque was never specifically measured,

it is much more than enough to power through anything it might encounter in the IGVC.

(a) (b)

Figure 4.2: Athena’s frame and drive train (a) and conceptual body art (b)

5. Hardware

Athena uses a suite of sensors to perceive the environment. Vision is accomplished by

way of a single 3CCD Panasonic digital color camera. Additionally, a Hokuyo laser

range finder is on-board performing vision duties in the form of obstacle detection.

Localization is achieved using a Novatel Propak V3 DGPS system, a PNI 3-axis digital

compass with pitch/roll compensation, and wheel odometers. All of the sensors are

interfaced to a Dell Latitude D830 laptop with an Intel Core2 Duo® processor running

Windows XP®. The sensor data is fed into an Extended Kalman Filter (EKF) which

performs the sensor fusion and determines the current position of the vehicle.

 Page 8 of 16

Figure 5.1: Hardware Data Flow

Component Accuracy/Resolution Refresh Rate

GPS 10cm 20 Hz

Camera 720 x 480 10 FPS

Laser Range Finder 4m Range, 240° FOV, 0.1° 10 Hz

Digital Compass Heading: 0.1°, Pitch/Roll: 0.2° 8 Hz

Wheel Odometers 512 CPR 10 Hz
Table 5.1: Sensor Performance Characteristic

6. Electrical System
The main electrical system is derived from 3, 12Ah 12V batteries configured in series for

a positive 36V rail. The motor controllers are

connected directly to the 36V unregulated rail.

A custom designed switch mode power supply

(SMPS) is used to switch the 36V raw DC

voltage to a more usable 12V rail. The custom

power supply also is equipped with a 5V linear

regulator to supply a positive 5V rail. The

power supply has two independent 12V/5V

regulator circuits. Currently only one of the Figure 6.1: Switch Mode Power Supply

circuits is being used, while the other one acts as an emergency backup or for future

EKF Position (X, Y, θ)
Output

 Page 9 of 16

hardware expansion. The board is capable of delivering up to 6A of 12V power and 2A

of 5V power. The small footprint (3” x 5”) allows the vehicle to have multiple power

supply modules if needed for further expansion without sacrificing too much space.

Figure 6.2: Electrical System Block Diagram

The GPS system is powered off of the 12VDC rail. The digital compass and LIDAR

units are powered off of the 5V rail. The wheel odometers are powered directly off of the

motor controllers which has its own power regulation circuitry.

6.1 System Monitoring

The Roboteq motor controllers that are used are capable of monitoring the electrical

system parameters of the system. The controller can report the heatsink temperature of

the output MOSFETs as well as the current. It can also monitor the battery voltage and

the motor voltage. The software can take this data and take the necessary actions to

prevent overheating due to excessive ambient temperature environments or excessive

current draw. Additionally, battery voltages can be monitored and sent wirelessly over

the diagnostics client to an operator.

 Page 10 of 16

6.2 E-Stop System

The vehicle is equipped with both a mechanical push button style E-stop as well as a

wireless E-Stop. Both E-Stop systems are wired to the E-stop port on the motor

controller module. Pulling the line low brakes the motors immediately and brings the

vehicle to a stand still until a command is issued to the motor controllers to reset. The

wireless E-stop is a custom made PCB with an embedded LinxRF® module. The module

operates at 430MHz and has a max range of 1000m. The vehicle can also be E-stopped

over the 802.11g wireless diagnostics client.

6.3 Power Consumption

Component Operating Voltage Power Consumption

GPS 12V 2.5W

LIDAR 5V 2.5W

Camera 7.9V 5.5W

Digital Compass 5V 110mW
Table 6.1: Hardware Power Consumption

Both the camera and the laptop run off of isolated battery supplies and are separate from

the electrical system. They will run continually for an average of 4 hours. The rest of the

vehicle also has an estimated average run time of 4 hours.

7. Software Design

7. 1 Software Environment

The entire software platform was designed around the Java Standard Edition 6.0

Application Programming Interface (API). For serial communications support, the Java

Communications 2.0 API was used. The Java Media FrameWork 2.1.1e API was used to

enable camera connectivity. Code is executed using the Java HotSpot Virtual Machine.

7.2 Version Control

The Subversion version control system was used to maintain current and past versions of

code. Use of version control ensures synchronization between versions stored on

individual software team developments computers and the current version stored on the

repository. The histories maintained by the repository are useful for reverting code if

 Page 11 of 16

unexpected bugs crop up or retrieving sections of code that may have been deleted in

newer versions.

7.3 Integrated Development Environment (IDE)

For software development, the open source Eclipse IDE was used. The debugging

features, refactoring support, and plug-in integration made it an ideal tool for rapid

software production and testing. The open source Subclipse plug-in was used to manage

the Subversion repository from within the IDE, seamlessly merging development and

version control.

7.4 Software Architecture

The software architecture is designed around a central server that mediates between low

level hardware interface software and high level processing and decision making

software. The hardware modules read raw data from the physical sensors and report it to

the server. Processing modules such as vision and the Kalman filter query the data from

the server and perform their operations. The processed data is fed into the path planning

and motor commands corresponding to its decisions are sent to the motor controllers to

move the robot. A diagnostics utility is available to view raw and process data to aid in

debugging and remote operation.

Image Processing Output

Sensor Input

Server

Camera

LIDAR

3-Axis
Compass

Wheel
Odometers

GPS Motor
Controllers

EKF

Path
Planning

Obstacle
Detection

Wireless
Diagnostics

Error LogSensor
Data

802.11g

Figure 7.1: Software Architecture Diagram

 Page 12 of 16

7.5 TCP/UDP Sockets

Sockets were used to provide communication between the hardware interface software

and the high level logic and control software. The use of sockets allows the low-level

hardware code to be written in any language since Java is not ideal for platform

dependent hardware interface and a language such as C is better suited for these

applications. Another benefit of using sockets is that wireless networking such as Wi-Fi

can be used to run diagnostic tools remotely during testing of the robot.

7.6 Concurrency and Parallelism

As the size reduction and its corresponding performance gains in processor cores

becomes increasingly difficult, most new processors are designed with multiple cores to

execute in parallel to increase speed. In order to exploit the increased performance of

multi-core or multi-processor systems, multiple discrete units of execution, or threads, are

created. In Java, the threads are explicitly created by the programmer but are then

managed by the virtual machine which then will decide on which core/processor that

thread should be executed on.

Figure 7.2: Multi-core (left) and single core (right) processor executing multiple threads (active

threads in red and sleeping threads in black)

7.7 Path Planning

Path planning received data from the Kalman filter to determine the robot’s current

position and vision/LIDAR to find obstacles. The longest path that avoided obstacles and

had the most forward movement was chosen. Mapping was used to store locations of

known past obstacles in order to prevent problems if the robot needed to back up and to

 Page 13 of 16

prevent unnecessary backtracking away from the goal. For planning of the Navigation

Challenge path, an algorithm was used to solve the problem of finding the most optimal

path from the given waypoints, a problem known as the Traveling Salesman Problem.

The algorithm used was able to optimize a ten waypoint path in roughly 440

milliseconds.

7.8 Vision

The Java Media Framework was used to grab and decode frames from the 3CCD camera

and export them as Java 2D images. These were then processed with custom software

that performed operations such as edge detection, density analysis, and color filtering.

Short circuit evaluation was used to increase performance by using computationally

cheap operations such as color filtering on images to try to identify objects and then using

more intensive operations such as edge detection to find objects if those fail.

Figure 7.3: Examples of Color Filter (left) and Edge Detection (right)

7.9 Kalman Filter

It became apparent early on in the design phase of the project that we required a way to

get an estimate of the vehicle’s current position based on multiple sensor inputs. A

Kalman filter provides a standard way of integrating our sensor data. It also provides a

way of assessing the validity of sensor data based on a computer model of the physical

system. The first part of the Kalman filter is the model of the vehicle. The Error!

 Page 14 of 16

Reference source not found. shows how our

vehicle was modeled. The robot makes use of

skid steering and is simplified as having two

wheels. The forward velocity is

simplified as the average velocity

contributed by both wheels. Figure 7.4: Vehicle Model

The rate at which the vehicle turns is described with the following equation.

The motion of the robot can be described with the following equations.

From the above equations we can derive the state space of the system that will be used in

the main Kalman filter equations.

In the initial phases of the project, using the

least squares method for processing sensor

data was considered. This proved useful if the

sensor data was reliable. The Kalman filter

would be less affected by situation where

there is high noise. The solid line represents a

line that is defined. The dots are points

randomly generated around the line. The

dotted line is an attempt to reconstruct the solid Figure 7.5: Least Squares Simulation

line from the dots using a batch least squares method.

 Page 15 of 16

8. Joint Architecture for Unmanned Systems (JAUS)

8.1 Learning Process

The team learned the JAUS design and specifications from the material provided at

www.jauswg.org under the “Current Documents” section. The communication protocol

definitions specifically were studied in order to decode the JAUS messages into

meaningful data.

8.2 JAUS Integration

Integrating the JAUS instruction messages into the software was a relatively simple

process. Using the existing TCP/UDP socket capability already built into the system, a

JAUS message processing module was created that listened for JAUS message packets

on a specified port. The messages received and decoded from the datagram packet would

then be translated into native commands that would place the robot in autonomous mode,

turn on or off an accessory, and report the robot’s current position as required in the level

2 of the JAUS challenge.

8.3 Problems

One major problem for the JAUS challenge was that there was no way to verify that the

testing done with a dummy OCU would accurately reflect what was to be expected at the

competition. Since there were no sample JAUS UDP packets provided, the team had to

create its own sample packets from the specifications provided and hope they were well

formed. Another problem was determining whether to use a network device such as a

switch or a simple crossover cable to connect the JAUS unit to the control computer. In

the end, a switch was chosen to give the option for support of multiple payload packages.

 Page 16 of 16

9. Vehicle Costs
Component Retail Cost Team Cost

Dell Latitude D830 Laptop $1,200 $0

Novatel Propak V3 DGPS $8,000 $3,900

PNI TCM-2.6 Digital Compass $850 $0

Panasonic 3CCD color camera $800 $0

US Digital optical encoders $150 $150

Roboteq AX1500 Motor Controller $250 $250

Roboteq Encoder Module for AX1500 $150 $150

Extreme Scooter ATV parts (wheels, batteries, motors) $1,250 $1,250

Mechanical parts $500 $500

Electrical parts (PCBs, parts, wiring) $600 $600

Total $13,750 $6,800
Table 9.1: Component cost breakdown.

10. Conclusion
Athena is equipped with a robust sensor suite on a rugged and dependable vehicle

platform. Combined with its innovative modular software architecture, Athena is capable

of handling any task that the customer desires. Future software and hardware modules

can be seamlessly integrated into the system to perform duties not currently supported.

The wireless diagnostics capabilities give customers full control and real time insight into

the vehicle’s performance characteristics. We think that these key properties give Athena

the edge is unmanned robotic vehicles.

11. Acknowledgments
We would like to thank all of our sponsors, Novatel, Omnistar, PNI, and the Energy

Systems Institute (ESI) at the University at Buffalo for their product donations. We

would like to think our IGVC project adviser, Dr. Puneet Singla, for his guidance in the

development of the software. In addition we would like to thank Chin Pei Tang for his

help with the Kalman filter. A special thanks go out to our club adviser Dr. Jennifer

Zirnheld for her continued support, in addition to Kevin Burke, Jon McMahon and the

rest of the ESI staff for their help in making this project possible

