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1. Introduction 

UB Robotics’ Unmanned Vehicle Team (UVT) at the University at Buffalo has designed 

and fabricated an autonomous unmanned ground vehicle to compete in the 16th annual 

Intelligent Ground Vehicle Competition (IGVC).  Several undergraduate students in the 

fields of mechanical, electrical, and computer engineering collaborated to produce a 

rugged and robust vehicle platform that can meet or exceed customer requirements.  

Modularity in both the software and hardware allow seamless system expansion and 

effortless integration of additional components. 

2. Innovations 

The heavy use of TCP/UDP sockets for interfacing the various software modules such as 

GPS and motor control eased integration of the JAUS requirements since the capability 

of sockets was already built into the system. Only a module that decodes messages was 

needed to integrate the JAUS into the platform. The use of multithreading to enhance 

performance on multi-core processors allowed for very intensive image processing which 

would have caused slowdowns and increased data latency on single core processors. The 

diagnostics utility allows for data logging and remote control from any computer 

connected to the network that the robot is connected to using its Wi-Fi adapter. In 

addition, a terminal emulator, such as PuTTY or telnet, found on most computers can be 

used to connect to the diagnostics socket and retrieve data. 

3. System Design 

3.1 Team Structure 

There were 11 active members working on this project from different engineering 

disciplines.  These members focused on specific areas of the project which best matched 

their individual skill sets.  Table 2.1 lists the team roster. 
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Name Major  Year Team Role 

Mike DiSanto EE 4th Year Undergrad Team Leader 

Tim Montgomery EE 4th Year Undergrad Hardware Team 

Dan Muffoletto EE 3rd Year Undergrad Hardware Team 

John Amend ME 4th Year Undergrad Mechanical Team Lead 

Kurt Cavalieri MAE 4th Year Undergrad Mechanical Team 

Brett Cotton MTH 4th Year Undergrad Mechanical Team 

Mark Tjersland CEN/EE 4th Year Undergrad Software Team Lead 

Jake Joyce CSE 2nd Year Undergrad Software Team 

Shajan Thomas MAE 4th Year Undergrad Software Team 

Brain O'Conner CSE 3rd Year Undergrad Software Team 

Jesse Evers EE 4th Year Undergrad Software Team 
Table 3.1: Team Roster 

 
The team was broken down into a mechanical team, software team, and hardware team.  

Each sub-team focused on specific tasks that were distributed during team meetings.  

Figure 2.1 illustrates the sub-team hierarchy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Team Member Hierarchy  

3.2 Design Process 

UB Robotics’ UVT used different design techniques and project management tools to aid 

in system development.  A private Google® group account was created specifically for 

this project.  This allowed seamless, forum style communication between members and 

sub-teams as well as a place to store design files and meeting minutes.  The first step in 
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the design was to review the rules and system requirements.  We then created a problem 

statement and system requirements document.  Throughout the entire design process 

these documents were referenced to ensure that we were including the necessary 

customer requirements and not wasting time on features that may or may not be 

desirable.  Since this was our first year competing in this competition, a lot of time was 

spent researching what sensing hardware would be needed in order for the vehicle to be 

able to navigate autonomously.  With a high level architecture mapped out, each sub-

team designed their respective components to satisfy the requirements of the system as a 

whole.  This method proved to work well as team’s worked in parallel and was able to 

communicate and track each team’s progress through the Google® group.   

 

 

Figure 3.2:  System Design Flow 

4. Mechanical Design 

4.1 Design Strategy 

The mechanical design was driven by two main factors: cost and performance.  We knew 

from the beginning that the average expenditures for IGVC teams were beyond our 

means, so we made every effort to reduce cost or obtain sponsorship where possible.  Our 

primary attempt to reduce cost was by purchasing two electric ATVs and then 

cannibalizing them for parts.  The ATVs were chosen over other possible vehicles 

because one of our goals was to make a vehicle that could realistically be used in an off-

road setting.  We felt that the competition had been lacking in that regard, with vehicles 

having difficulty traversing the fairly mild terrain in years past.  Therefore these ATVs, 
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with approximately 12in diameter knobby tires, were a logical purchase.  Error! 

Reference source not found. is a photo of the ATVs with the plastic body removed from 

the unit on the right.  The ATVs (model XA-750) were purchased from X-treme Electric 

Scooters, a sub-company of Alpha Products International, Inc.  Their size was somewhat 

unusual, being  

too powerful for a child, but too small for an 

adult to ride comfortably.  Each ATV cost 

us $599, and we were able to use the 

motors, batteries, frame, wheels, axles, 

bearings, sprockets, roller chain, and horn.  

Pro/Engineer Wildfire was used to model 

the ATVs and design the final vehicle.  The 

main performance specifications for the final       Figure 4.1: Electric ATV’s      

design were that it was within the allowable size requirements, was mechanically 

governed to less than 5mph, and was able to accommodate everything it would need to 

contain (sensors, computer, payload, etc.).  Our electrical team also specified that the 

vehicle be skid steer with as close to a square wheel pattern as possible.  They felt that 

skid steering would be easier to control, especially for our inaugural entry in this 

competition. 

4.2 Performance 

Initial testing of the ATVs yielded promising (and fun) results.  The 750W (~1hp) 

brushed DC motor driving each ATV was powered by three 12V, 12Ah batteries, wired 

in series.  Although uncomfortable for an adult to ride, each ATV was easily able to 

transport our club members.  Testing was conducted on campus green space that was not 

particularly well manicured.  We measured top speed of the ATVs at just below 10mph; 

the batteries lasted approximately 30 minutes under continuous testing; and the vehicles 

had no trouble carrying our 150lb team members up inclines greater than 30°. 

 
In the final vehicle shown in Figure (a), the two ATVs have been cut in half and the rear 

ends have been spliced together.  New, secondary axles were fabricated that allowed for 

chain-driven skid steering.  The motor output, already geared down by ½ in the original 
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ATVs, was geared down by an additional ½ in the final design to set the top speed to less 

than 5mph.  These modifications give Athena incredible performance statistics, including 

roughly four times the torque of either ATV alone.  Completed, Athena has a top speed 

less than 5mph, an available 2 hp, and although torque was never specifically measured, 

it is much more than enough to power through anything it might encounter in the IGVC. 

 

      
(a)       (b) 

Figure 4.2: Athena’s frame and drive train (a) and conceptual body art (b)  

5. Hardware 
 
Athena uses a suite of sensors to perceive the environment.  Vision is accomplished by 

way of a single 3CCD Panasonic digital color camera.  Additionally, a Hokuyo laser 

range finder is on-board performing vision duties in the form of obstacle detection.  

Localization is achieved using a Novatel Propak V3 DGPS system, a PNI 3-axis digital 

compass with pitch/roll compensation, and wheel odometers.  All of the sensors are 

interfaced to a Dell Latitude D830 laptop with an Intel Core2 Duo® processor running 

Windows XP®.  The sensor data is fed into an Extended Kalman Filter (EKF) which 

performs the sensor fusion and determines the current position of the vehicle.   
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Figure 5.1:  Hardware Data Flow 

 

Component Accuracy/Resolution Refresh Rate 

GPS 10cm 20 Hz 

Camera 720 x 480 10 FPS 

Laser Range Finder 4m Range, 240° FOV, 0.1° 10 Hz 

Digital Compass Heading: 0.1°, Pitch/Roll: 0.2° 8 Hz 

Wheel Odometers 512 CPR 10 Hz 
Table 5.1: Sensor Performance Characteristic 

6. Electrical System 
The main electrical system is derived from 3, 12Ah 12V batteries configured in series for 

a positive 36V rail.  The motor controllers are 

connected directly to the 36V unregulated rail.  

A custom designed switch mode power supply 

(SMPS) is used to switch the 36V raw DC 

voltage to a more usable 12V rail.  The custom 

power supply also is equipped with a 5V linear 

regulator to supply a positive 5V rail.  The 

power supply has two independent 12V/5V 

regulator circuits.  Currently only one of the           Figure 6.1: Switch Mode Power Supply 

circuits is being used, while the other one acts as an emergency backup or for future  

EKF Position (X, Y, θ) 
Output 
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hardware expansion.  The board is capable of delivering up to 6A of 12V power and 2A 

of 5V power.  The small footprint (3” x 5”) allows the vehicle to have multiple power 

supply modules if needed for further expansion without sacrificing too much space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2:  Electrical System Block Diagram 

 

The GPS system is powered off of the 12VDC rail.  The digital compass and LIDAR 

units are powered off of the 5V rail.  The wheel odometers are powered directly off of the 

motor controllers which has its own power regulation circuitry. 

6.1 System Monitoring 

The Roboteq motor controllers that are used are capable of monitoring the electrical 

system parameters of the system.  The controller can report the heatsink temperature of 

the output MOSFETs as well as the current.  It can also monitor the battery voltage and 

the motor voltage.  The software can take this data and take the necessary actions to 

prevent overheating due to excessive ambient temperature environments or excessive 

current draw.  Additionally, battery voltages can be monitored and sent wirelessly over 

the diagnostics client to an operator. 
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6.2 E-Stop System 

The vehicle is equipped with both a mechanical push button style E-stop as well as a 

wireless E-Stop.  Both E-Stop systems are wired to the E-stop port on the motor 

controller module.  Pulling the line low brakes the motors immediately and brings the 

vehicle to a stand still until a command is issued to the motor controllers to reset.  The 

wireless E-stop is a custom made PCB with an embedded LinxRF® module.  The module 

operates at 430MHz and has a max range of 1000m.  The vehicle can also be E-stopped 

over the 802.11g wireless diagnostics client. 

6.3 Power Consumption 

Component Operating Voltage Power Consumption 

GPS 12V 2.5W 

LIDAR 5V 2.5W 

Camera 7.9V 5.5W 

Digital Compass 5V 110mW 
Table 6.1: Hardware Power Consumption 

 
Both the camera and the laptop run off of isolated battery supplies and are separate from 

the electrical system.  They will run continually for an average of 4 hours.  The rest of the 

vehicle also has an estimated average run time of 4 hours. 

7. Software Design 

7. 1 Software Environment 

The entire software platform was designed around the Java Standard Edition 6.0 

Application Programming Interface (API). For serial communications support, the Java 

Communications 2.0 API was used. The Java Media FrameWork 2.1.1e API was used to 

enable camera connectivity. Code is executed using the Java HotSpot Virtual Machine. 

7.2 Version Control 

The Subversion version control system was used to maintain current and past versions of 

code. Use of version control ensures synchronization between versions stored on 

individual software team developments computers and the current version stored on the 

repository. The histories maintained by the repository are useful for reverting code if 
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unexpected bugs crop up or retrieving sections of code that may have been deleted in 

newer versions. 

7.3 Integrated Development Environment (IDE) 

For software development, the open source Eclipse IDE was used. The debugging 

features, refactoring support, and plug-in integration made it an ideal tool for rapid 

software production and testing. The open source Subclipse plug-in was used to manage 

the Subversion repository from within the IDE, seamlessly merging development and 

version control. 

7.4 Software Architecture 

The software architecture is designed around a central server that mediates between low 

level hardware interface software and high level processing and decision making 

software. The hardware modules read raw data from the physical sensors and report it to 

the server. Processing modules such as vision and the Kalman filter query the data from 

the server and perform their operations. The processed data is fed into the path planning 

and motor commands corresponding to its decisions are sent to the motor controllers to 

move the robot. A diagnostics utility is available to view raw and process data to aid in 

debugging and remote operation. 

Image Processing Output

Sensor Input

Server

Camera

LIDAR

3-Axis 
Compass

Wheel 
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GPS Motor 
Controllers

EKF

Path 
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Obstacle 
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Error LogSensor 
Data

802.11g

  

Figure 7.1: Software Architecture Diagram 
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7.5 TCP/UDP Sockets 

Sockets were used to provide communication between the hardware interface software 

and the high level logic and control software. The use of sockets allows the low-level 

hardware code to be written in any language since Java is not ideal for platform 

dependent hardware interface and a language such as C is better suited for these 

applications. Another benefit of using sockets is that wireless networking such as Wi-Fi 

can be used to run diagnostic tools remotely during testing of the robot. 

7.6 Concurrency and Parallelism 

As the size reduction and its corresponding performance gains in processor cores 

becomes increasingly difficult, most new processors are designed with multiple cores to 

execute in parallel to increase speed. In order to exploit the increased performance of 

multi-core or multi-processor systems, multiple discrete units of execution, or threads, are 

created. In Java, the threads are explicitly created by the programmer but are then 

managed by the virtual machine which then will decide on which core/processor that 

thread should be executed on. 

 

 

 

Figure 7.2: Multi-core (left) and single core (right) processor executing multiple threads (active 

threads in red and sleeping threads in black) 

7.7 Path Planning 

Path planning received data from the Kalman filter to determine the robot’s current 

position and vision/LIDAR to find obstacles. The longest path that avoided obstacles and 

had the most forward movement was chosen. Mapping was used to store locations of 

known past obstacles in order to prevent problems if the robot needed to back up and to 
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prevent unnecessary backtracking away from the goal. For planning of the Navigation 

Challenge path, an algorithm was used to solve the problem of finding the most optimal 

path from the given waypoints, a problem known as the Traveling Salesman Problem. 

The algorithm used was able to optimize a ten waypoint path in roughly 440 

milliseconds. 

7.8 Vision 

The Java Media Framework was used to grab and decode frames from the 3CCD camera 

and export them as Java 2D images. These were then processed with custom software 

that performed operations such as edge detection, density analysis, and color filtering. 

Short circuit evaluation was used to increase performance by using computationally 

cheap operations such as color filtering on images to try to identify objects and then using 

more intensive operations such as edge detection to find objects if those fail. 

 

 

Figure 7.3: Examples of Color Filter (left) and Edge Detection (right) 

7.9 Kalman Filter 

It became apparent early on in the design phase of the project that we required a way to 

get an estimate of the vehicle’s current position based on multiple sensor inputs.  A 

Kalman filter provides a standard way of integrating our sensor data.  It also provides a 

way of assessing the validity of sensor data based on a computer model of the physical 

system.  The first part of the Kalman filter is the model of the vehicle.  The Error! 
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Reference source not found. shows how our 

vehicle was modeled.  The robot makes use of 

skid steering and is simplified as having two 

wheels.   The forward velocity is 

simplified as the average velocity  

contributed by both wheels.      Figure 7.4: Vehicle Model 

 

The rate at which the vehicle turns is described with the following equation. 

 

The motion of the robot can be described with the following equations. 

 

 

 
From the above equations we can derive the state space of the system that will be used in 

the main Kalman filter equations.   

In the initial phases of the project, using the 

least squares method for processing sensor 

data was considered.  This proved useful if the 

sensor data was reliable.  The Kalman filter 

would be less affected by situation where 

there is high noise.  The solid line represents a 

line that is defined.  The dots are points 

randomly generated around the line.  The 

dotted line is an attempt to reconstruct the solid  Figure 7.5: Least Squares Simulation 

line from the dots using a batch least squares method.   
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8. Joint Architecture for Unmanned Systems (JAUS) 

8.1 Learning Process 

The team learned the JAUS design and specifications from the material provided at 

www.jauswg.org under the “Current Documents” section. The communication protocol 

definitions specifically were studied in order to decode the JAUS messages into 

meaningful data. 

8.2 JAUS Integration 

Integrating the JAUS instruction messages into the software was a relatively simple 

process. Using the existing TCP/UDP socket capability already built into the system, a 

JAUS message processing module was created that listened for JAUS message packets 

on a specified port. The messages received and decoded from the datagram packet would 

then be translated into native commands that would place the robot in autonomous mode, 

turn on or off an accessory, and report the robot’s current position as required in the level 

2 of the JAUS challenge. 

8.3 Problems 

One major problem for the JAUS challenge was that there was no way to verify that the 

testing done with a dummy OCU would accurately reflect what was to be expected at the 

competition. Since there were no sample JAUS UDP packets provided, the team had to 

create its own sample packets from the specifications provided and hope they were well 

formed. Another problem was determining whether to use a network device such as a 

switch or a simple crossover cable to connect the JAUS unit to the control computer. In 

the end, a switch was chosen to give the option for support of multiple payload packages. 
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9. Vehicle Costs 
Component Retail Cost Team Cost 

Dell Latitude D830 Laptop $1,200 $0 

Novatel Propak V3 DGPS $8,000 $3,900 

PNI TCM-2.6 Digital Compass $850 $0 

Panasonic 3CCD color camera $800 $0 

US Digital optical encoders $150 $150 

Roboteq AX1500 Motor Controller $250 $250 

Roboteq Encoder Module for AX1500 $150 $150 

Extreme Scooter ATV parts (wheels, batteries, motors) $1,250 $1,250 

Mechanical parts $500 $500 

Electrical parts (PCBs, parts, wiring) $600 $600 

Total $13,750 $6,800 
Table 9.1: Component cost breakdown. 

 

10. Conclusion 
Athena is equipped with a robust sensor suite on a rugged and dependable vehicle 

platform.  Combined with its innovative modular software architecture, Athena is capable 

of handling any task that the customer desires.  Future software and hardware modules 

can be seamlessly integrated into the system to perform duties not currently supported.  

The wireless diagnostics capabilities give customers full control and real time insight into 

the vehicle’s performance characteristics.  We think that these key properties give Athena 

the edge is unmanned robotic vehicles. 
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